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Abstract

Short-text classification is increasingly used in a wide range of applications.

However, it still remains a challenging problem due to the insufficient nature

of word occurrences in short-text documents, although some recently developed

methods which exploit syntactic or semantic information have enhanced perfor-

mance in short-text classification. The language-dependency problem, however,

caused by the heavy use of grammatical tags and lexical databases, is considered

the major drawback of the previous methods when they are applied to appli-

cations in diverse languages. In this article, we propose a novel kernel, called

language independent semantic (LIS) kernel, which is able to effectively com-

pute the similarity between short-text documents without using grammatical

tags and lexical databases. From the experiment results on English and Korean

datasets, it is shown that the LIS kernel has better performance than several

existing kernels.
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1. Introduction

In the past decade, short-text documents have been widely used in various

applications in diverse languages. Many recent resources on the Web regardless

of the languages exist in the form of short-text documents, including Web-

site summaries, document snippets, image captions, and news comments. In

social networks and micro-blogging services, users usually write short-texts to

describe their ideas, feelings, and opinions within a few sentences such as tweets

on Twitter and status updates on Facebook (Musia l & Kazienko, 2011). In

addition, the spreading of short-text documents has been limited not only to

Web-based services but also to mobile applications.

Therefore, an effective method for classifying short-text documents becomes

increasingly important in various research areas such as information retrieval,

recommendation, and social network analysis (Leong et al., 2012; Liu et al., 2012;

Tomas & Vicedo, 2012). Short-text document classification is still considered

a challenging problem mainly because of the following natures of short-text

documents. First, the small number of words in a short-text document is not so

enough to effectively classify the documents compared to that of a lengthy text

document (Taksa et al., 2007). Second, the low occurrence rate of a word across

documents causes the small number of words in common among documents

(Sheth et al., 2005).

To address the issues, a few classification methods for short-text documents

were recently proposed that attempt to calculate the similarity between docu-

ments by utilizing learning-based techniques (Faguo et al., 2010; Sriram et al.,

2010). It is said that these methods are language dependent in that they mainly

exploit grammatical tags and lexical databases to reflect syntactic or semantic

features of documents.

The previous methods have limitations in extracting syntactic and semantic

features and calculating the similarity between documents due to the heavy use

of the grammatical tags and lexical databases which are often unavailable in

many languages. As a matter of fact, only a few number of lexical databases such
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as WordNet (Fellbaum, 2010) and FameNet (Baker et al., 1998) have currently

been developed, and most of them are dedicated to English and Chinese. In

addition, there is no natural language processor that produces grammatical tags

such as part of speech (POS) tags and predicate argument structure (PAS) tags

based on syntactic analysis cannot be used for documents in most languages.

Moreover, the previous methods separately address the syntactic and semantic

features of documents, which might not result in the satisfactory results.

Motivated by the above remarks, we propose a kernel, called language inde-

pendent semantic (LIS) kernel, which aim to effectively calculate the similarity

between short-text documents by utilizing both the syntactic and semantic fea-

tures of documents without relying on grammatical tags of words and ready-

made lexical databases. Unlike previous kernels, the LIS kernel accommodates

the two features, syntactic and semantic, in a single kernel by extracting syn-

tactic patterns and annotating semantic information on words appearing in a

document. Specifically, LIS kernel extracts the syntax-based patterns from a

document. To address the small number and low occurrence rate of words prob-

lem, we considers the three levels of semantic annotations, word, document, and

category, on each of syntactically extracted pattern.

The remainder of this paper is organized as follows. First, previous ker-

nels for short-text document classification are described in Section 2. The pro-

posed syntax-based pattern extraction and annotation methods are presented

in Section 3. Experiment results are presented to show the effectiveness of the

proposed kernels in Section 4. Finally, we conclude this article in Section 5.

2. Related work

Existing kernels developed for text classification can be divided into: word

occurrences, syntax features, semantic features, and both syntactic and semantic

features. Table 1 summarizes kernels in terms of their considered features and

language constraints. The most widely used kernels for text classification is

Bag-of-word (BOW) kernel, which calculates the similarity between documents
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Table 1
Kernels for text classification in previous work (G and L represent grammatical tags and
lexical databases, respectively)

Considered fea-
ture

Kernel Language
constraints

Author

Word occurrence Bag-of-word (BOW)
kernel

None Joachims (1998)

Word sequence String kernel None Lodhi et al. (2002)
Syntactic struc-
ture

Syntactic parse tree
(ST) kernel

G Collins & Duffy
(2001)

Word similarity Semantic smoothing
(SS) kernel

L Siolas & d’Alché
Buc (2000)

Word similarity Latent semantic (LS)
kernel

None Cristianini et al.
(2002)

Syntactic struc-
ture and word
similarity

Syntactic semantic tree
(SST) kernel

G and L Bloehdorn & Mos-
chitti (2007)

based on the number of word occurrences (Joachims, 1998), which implies that

it does not use any syntactic or semantic features.

Many studies have been conducted focusing on expanding feature spaces by

incorporating syntactic and semantic features. Firstly, String kernel includes

syntactic features by using substrings of a document for representing the doc-

ument (Lodhi et al., 2002). Specifically, the main idea of string kernel is that

the more substrings two documents have in common, the more similar the docu-

ments are. Next, syntactic parse tree (ST) kernel uses a syntactic parse tree of a

document as its syntactic feature (Collins & Duffy, 2001). This kernel computes

the similarity between documents by comparing the production of all possible

pairs of nodes and counting the number of common sub-trees.

The limitation of the kernels, BOW kernel, String, and ST kernels, is that

they compute the similarities based on the number of common features such

as words, substrings, and sub-trees, respectively. It means that when there

are few words in common among documents, they cannot show satisfactory

performance.

To resolve the problem, there have been some efforts to design kernels that
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incorporate semantic features by using a priori semantic knowledge such as se-

mantic smoothing (SS) and latent semantic (LS) kernels. SS kernel utilizes a

lexical database called WordNet to obtain semantic features of a document (Sio-

las & d’Alché Buc, 2000). In LS kernel, words in a document are annotated with

semantically related words which are extracted from a semantic space where the

document is implicitly mapped (Cristianini et al., 2002). More recently, the se-

mantic and syntactic kernel uses predicate-argument structures to consider the

lexical dependencies between words (Moschitti, 2009).

Especially for short-text classification, syntactic semantic tree (SST) kernel

combines both syntactic and semantic features (Bloehdorn & Moschitti, 2007).

The concept of SST kernel is based on ST kernel, which represents a docu-

ment as a syntactic parse tree by using grammatical tags, and SS kernel, which

uses a lexical database to incorporate semantic features. In terms of language

independency, BOW, String, and LS kernels are language independently ap-

plicable, whereas other kernels, ST, SS, and SST, are not applicable in some

languages due to their dependency to grammatical tags and lexical databases.

Accordingly, we attempt to suggest a kernel that utilizes both the syntactic and

semantic features of documents without relying on grammatical tags and lexical

databases.

3. Language independent semantic (LIS) kernel

In this section, we introduce a language independent semantic (LIS) kernel

which is developed for short-text classification. LIS kernel composed of three

parts as shown in Figure 1: pattern extraction, semantic annotation, and simi-

larity computation. First, it extracts patterns from a document by considering

its syntactic information. Second, each extracted pattern is annotated in terms

of three annotation levels, word, document, and category. Finally, LIS kernel

computes the similarity between documents by using their extracted patterns

according to the three annotation levels. For classification tasks, LIS kernel is

then applied in a kernel machine which aims to classify new documents into one
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Fig. 1. An overview of LIS kernel.

of predefined categories based on the similarities between a new document and

an existing documents in the category (Sanchez A, 2003). It provides the simi-

larity between documents in a dataset to the kernel machine during its training

and testing stages.

3.1. Syntax-based pattern extraction from short-text documents

To consider the syntactic features of documents when calculating similarity

between documents, a syntax-based pattern extraction method is introduced.

Here, a syntax-based pattern extracted from a document refers to a set of words

appearing the document based on the syntax of a specific language. There exist

some methods to extract patterns from a document based on different features

of text documents. While a pattern is considered as a word that appear in a

document in the word occurrence based method (Joachims, 1998), it consists of

a set of consecutive words that appear in a document in the word sequence based

6



method (Lodhi et al., 2002). On the other hand, in the parse tree based method

based on syntactic structure, a pattern is extracted from the tree of a document

by considering not only the word occurrence but also the word sequence in the

document (Collins & Duffy, 2001).

Therefore, we focus on the pattern extraction method based on syntactic

parse tree in this paper, since the method gives advantages to extract patterns

through providing both occurrence and sequence of words compared to the

alternative methods. We note that the alternatives can be utilized to extract

the patterns from a document when its syntactic parse tree is unavailable.

Specifically, the tree based pattern extraction method utilizes the syntactic

parse tree of a document. The underlying idea has been originally proposed for

ST kernel that uses the sub-trees of the syntactic parse tree obtained from a

document (Collins & Duffy, 2001). Since ST kernel extracts all the sub-trees

which include more than one node, the extracted patterns from a document

include not only the sequence of words but also their grammatical tags. Unlike

the pattern extraction in ST kernel, the tree based method extract patterns by

utilizing word sequences based on syntax without grammatical tags.

Each document is parsed by using an language processor that indicates the

phrases in the document as a form of tree. For the parse tree of a document, all of

its complete sub-trees which represent phrases in the document are considered.

Subsequently, based on a complete sub-tree, a pattern is extracted by using an

algorithm, called PATTERN EXTRACTION algorithm shown in Figure 3. The

examples shown in Figure 2 (a) and (b) depict the syntactic parse tree and the

complete sub-trees of a document, “Patient billing service located in northern

California”, respectively, and Figure 2 (c) shows the final extracted patterns

from the document.

In detail, the syntax-based patterns of a document are extracted based on

the syntactic parse tree of the document by utilizing the algorithm that appends

the words appearing on the leaf nodes related to a given node, cu, to a given

empty pattern, pa. To keep the order of words in a document, the algorithm

performs the breadth-first traversal of a tree. For a given node, cu, the algorithm
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(a) Syntactic parse tree

{Patient, billing, services}

{located, in, northern, California}

{in, northern, California}

(b) Complete sub-trees

(c) Extracted patterns

Patient billing services

Phrase Phrase

Phrasein

northern California
Phrase

located Phrase

Phrasein

northern California

Phrase

northern California

{northern, California}

{Patient, billing, services, located, in, northern, California}

Patient billing services

Phrase Phrase

located Phrase

Phrasein

northern California

Root

Patient billing services

Phrase Phrase

located Phrase

Phrasein

northern California

Root

Fig. 2. An example of pattern extraction using parse tree.

PATTERN EXTRACTION (cu, pa)
1. for every child node ch of cu do
2. if ch is a leaf node then
3. append(pa, word on ch)
4. PATTERN EXTRACTION (ch, pa)
5. return pa

Fig. 3. Pattern extraction algorithm.

checks whether or not a child node, ch, is a leaf node by visiting every child

node of cu (line 1 in Figure 3). In the case that ch is a leaf node, the word

on ch is used for generating the syntax-based pattern of the tree, pa (line 2).

The word on ch becomes the first word when ch is the first visited leaf node of

a sub-tree rooted in cu, while the word is appended to existing pa by using a

function, append(pa,word), which adds the word to the end of pa (line 3). The

algorithm examines the remaining unvisited nodes of a tree until every node on

the tree is visited.

3.2. Semantic annotation to patterns

Semantic information is annotated on each extracted pattern by considering

three semantic levels: word, document, and category. First, the words that
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between ps and words 

by Eq. (1)

Select top kW 

words

Construct AW(ps) 

by Eq. (2)

Calculate similarities 

between ps and documents 

by Eq. (3)

Select top kD 

documents

Construct AD(ps) 

by Eq. (4)

Calculate similarities 

between ps and categories 

by Eq. (5)

Construct AC(ps)

by Eq. (6)

(a) Word-level annotation

(b) Document-level annotation

(c) Category-level annotation

Fig. 4. Flowcharts of constructing three levels of semantic annotations on pattern ps.

frequently co-occur within a pattern are used to define the meaning of the

pattern in word-level annotation. Next, the meaning of a pattern is expanded

by using words that appear in the similar documents to the pattern in document-

level annotation. Lastly, the association between a pattern and a category based

on their similarity is additionally considered in category-level annotation.

Three levels of semantic annotations on a pattern, called semantic pattern

annotation (SPA), has been widely applied to enrich the meanings of patterns

with the help of related words and documents (Luo et al., 2011; Mei et al.,

2007). In SPA method, the meaning of a pattern is defined and expanded

by annotating words, sentences, and related patterns. On the contrary, the

similar words to a pattern are used for the document and category-levels on the

pattern in this research. Moreover, while SPA method focuses on discovering

the meaning of a pattern for human understanding, the representation scheme

of semantic annotation enables to automatically compute the similarity between

patterns for classification tasks.

We consider N documents, D = {dn | n = 1, . . . , N}, and M categories,
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C = {cm | m = 1, . . . ,M}, and document dn ∈ D is associated with cm ∈ C.

A set of distinct words that appear in documents in D is denoted by W =

{wl | l = 1, . . . , L}, where and L are the number of distinct words. A document,

dn ∈ D, is represented as an L-dimensional vector, dn =< x1n, . . . , xLn >,

where xln is one if wl appears in dn, and zero otherwise. We also define a set

of patterns as P = {ps | s = 1, . . . , S}, where S is the total number of distinct

patterns extracted from documents in D by using the pattern extraction method

presented in Section 3.1. A pattern, ps ∈ P , is denoted by ps =< y1s, . . . , yLs >,

where yls is one if wl appears in ps, and zero otherwise.

Each pattern, ps, is annotated semantically in word-, document-, and category-

levels, as illustrated in the flowcharts of Figure 4. In the three types of annota-

tions, the similarities are first calculated by comparing the pattern with words,

documents, and categories. Specifically, in the former two annotations, only

top similar words or documents are selected because the numbers of words and

documents are too huge to apply all of them to semantic annotations directly.

Finally, the selected words or documents in the former two levels and the simi-

larities in three levels are used to construct three types of semantic annotation

vectors, denoted by AW (ps), AD(ps), and AC(ps).

First, in word-level annotation, to calculate the similarity between ps and

wl, mutual information (Zhao, 2010) is applied, denoted by msl, as:

mi(wl, ps) = log
Pr(wl ∧ ps)
Pr(wl)Pr(ps)

(1)

where Pr(wl ∧ ps) is the probability that both wl and ps appear in a docu-

ment, and Pr(wl) and Pr(ps) are the probabilities that wl and ps appear in a

document, respectively.

Based on the similarities of all words in W with respect to pattern ps, top

kW words, denoted by Ws, are selected to annotate semantics in the word level.

The word-level annotation on ps is finally generated in form of an L-dimensional
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vector, AW (ps) =< α1s, · · · , αLs >, where

αls =

mi(wl, ps), if wl ∈Ws

0, otherwise

(2)

Next, the document-level annotation of ps is constructed similar to the word-

level. The cosine similarity metric is adopted to compute the similarity between

dn and ps as:

cos(dn, ps) =

∑L
l=1 xlnyls√∑L

l=1 x
2
ln

√∑L
l=1 y

2
ls

(3)

After calculating the similarities of all documents in D with respect to pat-

tern ps, top kD documents, denoted by Ds, are selected to annotate semantics

in the document level on ps. The document-level annotation is then represented

as an L-dimensional vector, AD(ps) =< β1s, · · · , βLs >, where βls means the

existence of wl in ps and is defined as:

βls = δ

( ∑
di∈Ds

xli

)
(4)

where δ(·) returns 1 if the given value is positive, and zero otherwise.

Finally, the category-level annotation on pattern ps is obtained based on the

similarity between the pattern and each of the categories in C. The similarity

between ps and cm is measured as the ratio of the documents that contains the

pattern in cm, calculated as:

rat(cm, ps) =
cf(cm, ps)

Mm
(5)

where Mm is the number of documents in cm.

According to the category similarities with respect to ps, the category-

level annotation of ps is represented as an M -dimensional vector, AC(ps) =<

γ1s, · · · , γMs >, where γms is the relative occurrence of ps in cm. Here, γms is
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defined as:

γms = rat(cm, ps) (6)

For instance, consider extracted pattern that contains “Patient”, “billing”,

“service”, shown in Figure 2. The associated words in its word-level annota-

tion include “patient”, “electronic”, “medical”, “billing”, and “services” when

kW = 5, while those in its document-level annotation are “hospital”, “payment”,

“Internet”, “surgery”, and “patient” when kD = 5. In the category-level an-

notation of the pattern, the associated categories to the pattern are “medical”

and “information”.

3.3. Similarity computation using LIS kernel

In this section, we describe how to calculate the similarity between two

documents by using LIS kernel. First of all, components of LIS kernel are

defined in Definition 1.

Definition 1. A pattern kernel, KP (ps, ps′), for s, s′ = 1, · · · , S, which calcu-

lates the similarity between two patterns, ps and ps′ , based on their semantic

annotations is defined as:

KP (ps, ps′) = λWKW (ps, ps′) + λDKD(ps, ps′) + λCKC(ps, ps′) (7)

In the equation, KW (ps, ps′), KD(ps, ps′), and KC(ps, ps′) represent kernels

that calculate similarities between two patterns based on word-, document-, and

category-level annotations, and λW , λD, and λC are the similarity coefficients

of three kernels, where λW + λD + λC = 1, λW ≥ 0, λD ≥ 0, and λC ≥ 0.

In detail, each kernel calculates the inner product between two corresponding

annotations, and three kernels are respectively defined as:

KW (ps, ps′) = AW (ps) · AW (ps′) (8)

KD(ps, ps′) = AD(ps) · AD(ps′) (9)

KC(ps, ps′) = AC(ps) · AC(ps′) (10)
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By Definition 1, a pattern kernel is defined as a weighted linear combination

of three types of kernels, which are for the similarity calculation according to the

corresponding levels of semantic annotation. The similarity calculation based

on three levels of semantic information is introduced for the pattern kernel to

effectively reflect the characteristics of short-text documents. The semantics in

terms of words and documents are critical elements to the pattern which should

be used to classify documents. Note that two patterns with similar semantics

are likely to often co-occur in the same document and also appear with many

common words in documents. Moreover, semantics based on categories is specif-

ically considered as additional semantic information on the pattern because two

patterns with similar semantics are often found simultaneously in the same

category. It can be said that the category-level of semantic annotation comple-

ments the other two levels of annotations by overcoming the insufficient number

of words in common which are frequently found in short-text classification.

Using the similarity coefficients, λW , λD, and λC , the weights of the three

types of kernels are decided, and the influence of the three levels of semantic

annotation can be adjusted depending on datasets. The three levels can be

altered or expanded depending on the purpose of semantic annotation.

Definition 2. LIS kernel that calculates the semantic similarity between two

text documents based on a pattern kernel, KP (dn, dn′), n, n′ = 1, · · · , D, is

defined as:

KLIS(dn, dn′) =
∑

ps∈pe(dn)

∑
ps′∈pe(dn′ )

KP (ps, ps′) (11)

where pe(dn) represents a set of all possible patterns extracted from document

dn by using the pattern extraction method described in Section 3.1.

Propositions 1 and 2 show that KLIS , KP , KW , KD, and KC are valid,

so-called Mercer kernels.

Proposition 1. KW , KD, and KC are Mercer kernels

Proof of Proposition 1. According to the theorem appeared in (Berg, 1990),

a kernel, K, is a Mercer kernel if K : P × P → R is symmetric and positive
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semi-definite, where P is a pattern space of document dn, n = 1, · · · , N . There-

fore, KW is a Mercer kernel, if KW (ps, ps′) = KW (ps′ , p), ∀ps, ps′ ∈ P, and
S∑

s,s′=1

hshs′KW (ps, ps′) = 0, {h1, . . . , hn} ⊆ R.

This implies that, for KW to be a Mercer kernel, the gram matrix of KW ,

whose elements are KW (ps, ps′), ∀ps, ps′ ∈ P, must be positive semi-definite.

KD and KC can also be proved to be Mercer kernels.

Since AW (ps), AD(ps), and AC(ps), s = 1, · · · , S, are positive, the entries of

gram matrices, KW , KD, and KC , which are the inner products of the vectors,

are also positive. The inner product is a symmetric function, implying that the

gram matrices are also symmetric since KW (ps, ps′) = KW (ps′ , ps). Therefore,

the gram matrices of KW , KD, and KC are symmetric matrices with positive

entries. They are diagonalized and all of their eigenvalues are positive, so the

gram matrices are positive semi-definite. Hence, by definition, KW , KD, and

KC are Mercer kernels. 2

Based on Proposition 1 that shows that KW , KD, and KC are Mercer ker-

nels, those kernels, the pattern kernel and LIS kernel are built by using kernel

combinations. The validity of KP and KLIS is proved in Proposition 11 by

inducing that they are also Mercer kernels.

Proposition 2. KP and KLIS are Mercer kernels

Proof of Proposition 2. Output functions of kernel combinations such as

the sum of kernels and the positively weighted kernels are Mercer kernels if the

primitive kernels are Mercer kernels (Shawe-Taylor & Cristianini, 2004). Hence,

pattern kernel, KP , which is a sum of positively weighted component kernels,

is a Mercer kernel since the component kernels, KW , KD, and KC , are proved

to be Mercer kernels by Proposition 2.

The convolution kernel is defined as a sum of composition kernels and if

the composition kernels are Mercer kernels, the convolution kernel is also a

Mercer kernel (Haussler, 1999). LIS kernel, KLIS , which is a convolution kernel

composed of KP , is a Mercer kernel because KP is proved to be a Mercer kernel.

2
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The computational complexity of the proposed semantic annotation method

is O(L × S). In addition, the complexity to calculate the similarity between

documents by using LIS kernel is O(S2) because all possible similarities among

patterns in a dataset are considered in the worst case. Note that the semantic

annotation task can be done in the learning time before the classification of

documents in the run-time.

4. Experiments

4.1. Datasets

To evaluate the proposed method, two languages, English and Korean, were

selected for experiments. For the English dataset, Web-site information ob-

tained from open directory project (ODP) (http://www.dmoz.org), the largest

human-edited Web-site directory service. It provides hierarchically categorized

Web-sites according to 15 top level categories. We randomly selected 10 top level

categories, and total 68,625 Web-sites from the selected top level categories were

gathered for the English dataset.

For the Korean dataset, we gathered Web-site information from Daum di-

rectory (http://directory.search.daum.net) which is the largest Korean Web-site

directory service that provides 15 top level categories. Similar to the English

dataset, we randomly selected 10 top level categories, and total 14,652 Web-sites

from the selected top level categories were collected for the Korean dataset.

We built a text document by combining the title and the description of

each Web-site. A half of the gathered documents were randomly selected for

the parameter selection of the proposed kernel and training of a classifier, and

the rest of the documents were used as testing data. The Korean and English

documents which were prepared for the experiments consisted of 71,800 and

16,617 distinct words, respectively.

Figures 5 and 6 show the distributions of the number of words per document

and the number of word occurrences across documents for the English and

Korean dataset, respectively. The graphs imply that most documents contain
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Fig. 5. Frequency distributions of document length and the number of documents per word
in the English dataset.

the small number of words, and most words appear in the small number of

documents. In the English dataset, 89.08% of the documents contain less than

20 words, and more than 99% contain less than 29 words. On the other hand, in

the Korean dataset, 82.25% of the documents contain less than 20 words, and

more than 99% contain less than 50 words.
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Fig. 6. Frequency distributions of document length and the number of documents per word
in the Korean dataset.

4.2. Experiment setting

4.2.1. Baselines

For comparison with the proposed kernel, we also evaluated three well-known

kernels, BOW (Joachims, 1998), String (Lodhi et al., 2002), and ST (Collins &

Duffy, 2001). We adopted the term frequency (TF) and inverted document fre-

quency (TF-IDF) method to represent the bag-of-words of each document in

BOW kernel. The values of the bag-of-words of a document then were normal-

ized with zero-one. In String kernel, the window parameter that determines the
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number of consecutive words for pattern extraction was set to 3, and no sig-

nificant performance change was observed in the different values of the window

parameter. Unfortunately, in this experiments, kernels such as SS (Siolas &

d’Alché Buc, 2000) and SST (Bloehdorn & Moschitti, 2007) were not applicable

to the Korean dataset due to their language dependency.

4.2.2. Natural language processor

To implement experiments, we employed a natural language processor de-

veloped by the Stanford Natural Language Group (Klein & Manning, 2003) for

the English documents, and KKM language processor (Lee et al., 2010) for the

Korean documents.

4.2.3. Text document classifier

Text document classification tasks in the experiments were conducted by

utilizing support vector machine (SVM), which is a binary classifier that at-

tempts to divide two types of instances based on geometric principle. It has

shown successful result from various text document classification tasks (Fu &

Lee, 2012; Saleh et al., 2011). We adopted a SVM library called libsvm (Chang

& Lin, 2011) and modified it to map documents into the semantic space we de-

fined by replacing the existing similarity function with LIS kernel. In addition,

we implemented the baselines, BOW, String, and ST kernels. Based on SVM,

the one-versus-all method was applied for multi-class discrimination.

4.2.4. Evaluation metric

Prediction results can be categorized into four cases in the confusion matrix,

as shown in Table 2, according to actual and predicted class labels of documents.

Based on the notations in the confusion matrix, the classification performance

was evaluated in terms of classification accuracy calculated as:

Accuracy =
TP + TN

TP + FP + FN + TN
(12)
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Table 2
Confusion matrix which defines four possible cases according to the actual and the predicted
class labels for a category

Predicted positive Predicted negative

Actual positive True positive (TP ) False negative (FN)
Actual negative False positive (FP ) True negative (TN)

4.3. Parameter selection

To select the parameters of LIS kernel, we evaluated the classification per-

formances obtained by using LIS kernel under various values of the annotation

parameters and the similarity coefficients. Due to a great number of possible

parameter combinations, we apply an empirical approach which results in the

satisfactory results in many applications such as ranking (Liu et al., 2010), in-

formation retrieval (Can et al., 2008), text classification (Zhang & Lee, 2006),

and similarity calculation of text documents (Wang & Oard, 2006).

Tables 3 and 4 represent the classification performances in terms of accu-

racy achieved by using LIS kernel based on the English and Korean datasets,

respectively. In the tables, the values of accuracy are shown while annotation

parameters, kW and kD, were varying whereas similarity coefficients, λW , λD,

and λC , were fixed. The best classification performances were represented in

bold.

In both datasets, the results show that the classification performances of

LIS kernel were able to be significantly improved compared to those obtained

without semantic annotation, represented by kW = 0 and kD = 0, even though

only a few words and documents were used for annotating semantic information.

Moreover, the classification performances were quite robust across different val-

ues of kW , kD ∈ {5, 10, 15, 20}.

Particularly, the best accuracy was observed under kW = kD = 5 for the

English dataset, whereas it was found under kW = 5 and kW = 20 for the

Korean dataset. When kW and kD became higher than 20 in both datasets,

no improvements of the classification performances was found in both datasets.

This implies that too much annotated words and documents can cause negative
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Table 3
Classification performances obtained by using LIS kernel based on the English dataset
obtained by varing kW and kD under the fixed similarity coefficients, λW = λD = λC = 1/3.

kW kD Accuracy kW kD Accuracy

0

0 0.318

10

0 0.749
5 0.678 5 0.787
10 0.682 10 0.787
15 0.682 15 0.790
20 0.682 20 0.790

5

0 0.738

15

0 0.772
5 0.801 5 0.787
10 0.798 10 0.790
15 0.798 15 0.790
20 0.798 20 0.790

Table 4
Classification performances obtained by using LIS kernel based on the Korean dataset
obtained by varing kW and kD underm the fixed similarity coefficients,
λW = λD = λC = 1/3

kW kD Accuracy kW kD Accuracy

0

0 0.238

10

0 0.646
5 0.707 5 0.718
10 0.707 10 0.713
15 0.707 15 0.713
20 0.707 20 0.713

5

0 0.608

15

0 0.641
5 0.718 5 0.724
10 0.713 10 0.707
15 0.713 15 0.713
20 0.729 20 0.718
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effects in classifying documents, caused by too much information in semantic

annotations. Therefore, the appropriate values of the parameters might be

essential not only to improve classification performances but also to reduce

computational costs for annotation tasks.

In addition, we also conducted the sensitivity analysis for classification per-

formance with respect to similarity coefficients, λW , λD, and λC , which is de-

signed to investigate how much the similarity coefficients affect the classifica-

tion performance. Two graphs in Figure 7 show accuracy values according to

datasets under different values of 0 ≤ λW ≤ 1 and 0 ≤ λD ≤ 1 at an interval

of 0.1. Note that λC = 1 − λW − λD, and kW = kD = 5 were applied for

the classification of the English dataset, while kW = 5 and kD = 20 for the

classification of the Korean dataset. The best accuracy values were observed

under λW = 0.4, λD = 0.2, and λC = 0.4 for the English dataset, and under

λW = 0.3, λD = 0.5, and λC = 0.2 for the Korean dataset, respectively.

4.4. Comparison results

In this section, the performance evaluation results of LIS kernel in short-text

classification are presented compared to three baseline kernels, BOW, String,

and ST, on the English and Korean dataset.

For the English dataset, the classification performances in terms of accuracy

are shown in Figure 8. In detail, Figure 8 (a) depicts accuracy values of LIS

kernel and three baseline kernels according to the number of categories. Cat-

egories were randomly selected in each number of categories, and the average

accuracy was calculated across 30 repeated tests in each case. In each number

of categories, LIS kernel outperformed three baseline kernels, and the average

improvements of accuracy against BOW, String, and ST kernels were 9.03%,

33.66%, and 23.66%, respectively.

Figure 8 (b) depicts accuracy of LIS kernel and the baseline kernels ac-

cording to the number of words per document. It also shows that LIS kernel

performed better than the baseline kernels when the number of words was less

than 15. We note that the proportion of documents whose number of words
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Fig. 7. Classification performances according to similarity coefficients, λW , λD, and λC
when kW = kD = 5 for the English dataset, and kD = 5 and kD = 20 for the Korean dataset.
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Fig. 8. Classification performances on the English dataset.

less than 15 was 67.04% in the English datasets. While BOW kernel resulted

in the better accuracy than LIS kernel only when the number of words was

25, the other baseline kernels show less accuracy in all the cases considered.

This means that the baseline kernels might suffer from a few words in common

across documents when the number of words per document is very small. On

the contrary, the consideration of semantic annotation for each pattern aiming

to address the insufficient number of words in common across documents was

effective to calculate the similarity between short-text documents.
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For the Korean dataset, the classification performances of LIS kernel and

three baseline kernels are captured in Figure 9.

Although String kernel shows better accuracy than LIS kernel when the

number of categories and the number of words were 2 and 5, respectively, LIS

kernel outperformed the baseline kernels including String kernel in the other

cases. We remark that the proportion of documents each of which contains less

than 5 words was less than 23%, implying that LIS kernel outperformed the

baselines in most cases.

Interestingly, String kernel yielded relatively robust performances across the

two languages while the other baseline kernels resulted in the sharply decreased

performances in the Korean dataset compared to the English dataset. It is con-

sidered that different results might be caused by the different character usages

in English and Korean.

Finally, we visualized the document by document similarity matrix obtained

by LIS kernel in Figure 10. To visualize the similarity matrix of 200 documents,

20 documents for each category were randomly selected for each dataset. In the

figure, darker colored areas represent higher similarity values, and we can say

that LIS kernel generally performs on both English and Korean datasets.

5. Conclusions

In this article, we proposed a novel kernel, called language independent (LIS)

kernel based on semantic annotation. LIS kernel was designed to effectively clas-

sify short-text documents independently of languages without requiring gram-

matical tags and lexical databases, which are often regarded as a critical obstacle

in many languages. We considered both syntactic and semantic features by uti-

lizing three levels of semantic annotations to address the language dependency

problem.

To evaluate the performances of the proposed kernel, two real-world language

datasets, Korean and English, were used, and the performances of LIS kernel

were compared to the existing methods such as BOW, String, and ST kernels.
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Fig. 9. Classification performances on the Korean dataset.

Experiment results showed that LIS kernel outperformed the others, and it is

also quite robust against the number of categories as well as the number of

words per document regardless of the considered languages.

The proposed LIS kernel is expected to serve as a tool of significantly improv-

ing the performance of short-text classification in various fields by alleviating

the language independency problem.
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(a) English dataset

(b) Korean dataset

Fig. 10. Similarity matrix of 200 documents obtained by LIS kernel.
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