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Abstract:

Purpose - To help industrial managers monitor and analyze critical performance indicators in real-time during

the execution of business processes, we propose a visualization technique using an extended formal concept

analysis (FCA). The proposed approach monitors the current progress of ongoing processes and periodically

predicts their probable routes and performances.

Design/methodology/approach - FCA is utilized to analyze relations among patterns of events in historical

process logs, and this method of data analysis visualizes the relations in a concept lattice. To apply FCA to real-

time business process monitoring, we extended the conventional concept lattice into a reachability lattice, which

enables managers to recognize reachable patterns of events in specific instances of business processes.

Findings - By using a reachability lattice, expected values of a target key performance indicator (KPI) are

predicted and traced along with probable outcomes. Analysis is conducted periodically as the monitoring time

elapses over the course of business processes.

Practical implications - The proposed approach focuses on the visualization of probable event occurrences on

the basis of historical data. Such visualization can be utilized by industrial managers to evaluate the status of any

given instance during business processes and to easily predict possible subsequent states for purposes of

effective and efficient decision-making. The proposed method was developed in a prototype system for proof of

concept and has been illustrated using a simplified real-world example of a business process in a

telecommunications company.

Originality/value - The main contribution of this paper lies in the development of a real-time monitoring

approach of ongoing processes. We have provided a new data structure, namely a reachability lattice, which

visualizes real-time progress of ongoing business processes. As a result, current and probable next states can be

predicted graphically using periodically conducted analysis during the processes.
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1. Introduction

A business process is a set of activities performed in order to achieve a common goal according to well-

defined objectives of an enterprise (Hammer and Champy, 1994; Keung and Kawalek, 1997). To sustain

competitiveness in a rapidly changing business environment, it is necessary for companies to manage their

business processes in real-time (Lam et al., 2009). The need to incorporate real-time visibility into business

processes has led to the increasing adoption of process monitoring systems in the business sector (Kang et al.,

2009a).

Business process monitoring provides real-time access to critical performance indicators of ongoing

processes and supports decision-making and risk management during execution of the processes. Integrated with

event processing technologies, the monitoring of current business processes is based on knowledge extracted

from historical process logs in order to detect distinct patterns in event data, which enable businesses to operate

proactively (Buytendijk and Flint, 2002; Grigori et al., 2004). This knowledge-based approach to monitoring is

called rule-based monitoring. It aims at analyzing data generated from interrelated activities executed within a

business, so that relations between process attributes and performance outcomes can be defined in a form of an

‘If (condition) - Then (status)’ rule (Luckham, 2002; Lundberg, 2006; Mendling et al., 2008). Utilizing these

rules, a monitoring system can evaluate the current status and predict possible outcomes for various business

processes (Wang and Romagnoli, 2005; Bose, 2006). Most existing process monitoring systems, however, still

have limitations that need to be improved, since existing systems mainly deal with the monitoring of completed

process instances in which all attributes are simultaneously recorded and analyzed (Kang et al., 2009b). In

executing real-time business processes, however, events are generated by sequences of relevant activities. If

correlations among generated events foreseeably influence the performance outcome upon completion of the

process, the monitoring system should predict the final performance based on the current status and real-time

progress of the process in order to enable more proactive operation.

To improve these limitations, we proposed a novel approach for real-time business process monitoring

using extended formal concept analysis (FCA). FCA is a mathematical tool for the investigation of objects

comprised of multiple attributes in order to reveal relations among them (Boucher-Ryan and Bridge, 2006). FCA

is often used to extract knowledge that is dependent on previous cases in order to support decision-making with

current problems (Díaz-Agudo and González-Calero, 2001). A concept lattice developed from FCA serves as a

data structure to visualize relations among previous cases. In this paper, we analyze historical process logs using

FCA and investigate the effects of co-occurrences of events on performance outcomes of the processes.

Structural visualization of event patterns on the concept lattice is also provided to facilitate effective process

monitoring.

As the data structure of a conventional concept lattice also has limitations when applied to real-time

monitoring, we devised an extended concept lattice, namely a reachability lattice, to visualize probable routes in

event co-occurrences in the real-time progress of any ongoing business process.

This paper provides an approach to real-time business process monitoring using a reachability lattice; an

event-based process monitoring model is presented along with the conceptual procedure of real-time process

monitoring. FCA is applied to investigate the relevancy of past events in historical cases, and a concept lattice is
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constructed to structurally represent the data. To modify the concept lattice, we subsequently developed an

extended concept lattice, which we defined as a reachability lattice. During the real-time progress of an ongoing

process, the current state is evaluated and possible next states are predicted. This is conducted periodically based

on observed event logs. Finally, an example scenario is presented with a prototype system to show how the

reachability lattice can be utilized in real-time process monitoring. The prototype system was developed on the

open-source business process mining framework, ProM (van der Aalst et al., 2007).

The rest of this paper is organized as follows. In Section 2, we present a literature review to describe

existing approaches in business process monitoring and other applications of formal concept lattice data analysis.

Based on this background, we explain our motivations for the proposed approach. The formal model of event-

based process monitoring and the conceptual procedure of real-time process monitoring are described in Section

3. Subsequently, we explain construction of the reachability lattice in Section 4. How to apply the reachability

lattice to real-time business process monitoring is then described in Section 5. In Section 6, a simplified real-

world example scenario is illustrated with a prototype system. Finally, conclusions and suggestions for future

work are summarized in Section 7.

2. Background

2.1. Business process monitoring

A study by Beckett et al. (2000) describes the history of business process monitoring as follows. Early

studies on process monitoring focused on the collection and analysis of large data sets, mainly in a

manufacturing domain. As changes in industry became more rapid and complexity increased, expert systems

were introduced, but autonomous operation remained difficult. To overcome these limitations, approaches to

process monitoring based on knowledge extraction were suggested. Recently, inductive techniques such as rule-

based approaches using data mining, inference models using case-based reasoning, and machine learning

methods have been adopted in process monitoring.

One of the most widespread monitoring approaches is knowledge extraction using data mining techniques.

Grigori et al. (2004) suggested a business intelligence model based on a decision tree. Historical process logs,

which are stored in business process management systems, are analyzed with a decision tree to extract rules for

current process monitoring. Widodo and Yang (2007) reviewed approaches to machine condition monitoring

using a support vector machine. Special features that cause particular faults can be derived by support vector

machine classifiers in order to detect faults in current machine conditions. Peddabachigari et al. (2007) proposed

a hybrid monitoring model combining a support vector machine with decision tree analysis. The study detected

occurrences of intrusion by analyzing correlations among events that occurred during transactions. Abad-Grau

and Arias-Aranda (2006) proposed a Bayesian classification algorithm to analyze relations between operation

strategy and flexibility. A Bayesian network was constructed to visualize extracted knowledge. Ho et al. (2008)

proposed a fuzzy-based generic algorithm to identify possible solutions for the improvement of quality in supply

chain management. Numerical process parameters were indentified for quality control, monitoring workflow,

and evaluation.

All of these approaches, however, have limitations that prevent effective application to real-time process



Published in Industrial Management and Data Systems, Vol. 111, No. 5, Jun 2011, pp. 652-674.

monitoring because they assume completed, as opposed to ongoing, processes. Most importantly, extracted

knowledge is simply not available until entire events are recorded, which leaves any knowledge based

monitoring system idle during the execution of processes (Grigori et al., 2001; Grigori et al., 2004).

Consequently, real-time feedback cannot be obtained. Moreover, comprehensive indicators representing real-

time progress are not periodically provided (Curtis et al., 2008).

2.2. Formal concept analysis

FCA is a mathematical tool that visualizes data and their inherent structures, implications and

dependencies (Wormuth and Becker, 2004; Wille, 1982). FCA analyzes relations among objects that have

several attributes.

The basic notions of FCA are a formal context and a formal concept (denoted as context and concept,

respectively). A context (G, M, I) consists of a set of objects G, a set of attributes M and the relations I between

G and M. Thus, a relation gIm means that an object g (∈G) has an attribute m (∈M). A context with finite sets

can be represented using a cross table as described in Figure 1 (a). For a set A⊆G, A’ is defined as the common

attributes of objects in A. Similarly, for a set B⊆M, B’ is defined as objects that have all attributes in B. Using

these properties, a concept of the context (G, M, I) is defined as a pair (A, B) where A⊆G, B⊆M, A’=B and

B’=A, and A is defined as the extent and B is defined as the intent of the concept (A, B). When (A1, B1) and (A2,

B2) are two concepts of a context, (A1, B1) is defined as a sub-concept of (A2, B2), provided that A1⊆A2 and

equivalently B2⊆B1. Respectively, (A2, B2) is a super-concept of (A1, B1) and is represented as (A1, B1) ≤ (A2,

B2), which is defined as the hierarchical order. Using the hierarchical orders of all concepts in the context, a

concept lattice can be generated as a graphical representation of relations among concepts, as shown in Figure 1

(b). Figure 1 (c) is another representation of (b), called a concept lattice with reduced labeling. To improve the

readability of the diagram, duplicate objects and attributes are removed in Figure 1 (c). As the concept becomes

more detailed, visual representation is located closer to the bottom of the lattice. Therefore, objects in the

concept inherit all attributes from their parent node. In Figure 1 (c), for example, object m1 has an attribute g3

and object m2 has two attributes - g1 and g3.

m1 m2 m3

g1 1 1

g2 1

g3 1

g4 1

({g1, g2, g3, g4}, {})

({g1, g3}, {m1})

({g1}, {m1, m2})

({}, {m1, m2, m3})

({g2, g4}, {m3})

(a) cross table (b) concept lattice (c) concept lattice
with reduced labeling

m1

g3

m2

g1g2, g4

m3

Figure 1: Context, concept lattice and concept lattice with reduced labeling
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There are also other mathematical or statistical methods, such as analytic hierarchy process, analytic

network process, or other optimization models that are used for similar purposes (Carpineto and Romano, 2004).

Compared to these methods, one of the distinct advantages of FCA is that it analyzes structural similarities

among cases in question and enables a more accessible visualization of data (Ganter and Wille, 1999; Priss,

2006; Solesvik and Encheva, 2010).

Thanks to capabilities such as the investigation and visualization of large sets in a database, FCA has been

applied to a number of engineering domains (Hernández et al., 2002). Beydoun (2009) utilized FCA as a

knowledge acquisition tool to visualize dependencies between web pages based on keywords, so that a

navigation system for internet searches was effectively constructed from previous virtual surfing trails. Jiang et

al. (2003) developed an ontology-forming support system in a clinical domain using FCA, in which FCA was

used to construct a class hierarchy by integrating linguistic knowledge information with contextual knowledge.

Hsieh and Wang (2010) utilized FCA in a web-based learning support system to construct a suitable learning

path by computing mutual relationships among documents based on extracted keywords. Arévalo et al. (2010)

suggested an automatic schema generation for software reengineering systems, in which FCA was used to

identify class hierarchy schemas by revealing undocumented hierarchical dependencies between classes

according to their behaviors and states. Park (2000) presented a FCA-based approach to software engineering in

which software components were analyzed using FCA in terms of their inputs and outputs so that users could

retrieve desired components from the component library. Boucher-Ryan and Bridge (2006) applied FCA to

collaborative recommendation systems by analyzing relations between users and items in order to identify user

experiences and preferences. Díaz-Agudo and González-Calero (2001) showed how FCA could support case-

based reasoning. By analyzing historical cases and visualizing their relations, FCA was used to foster the query

formulation process to find patterns, regularities, and exceptions among the cases. As shown in existing studies,

FCA effectively analyzes relations among large cases and also visualizes the results in comprehensible graphs.

Thus, in our research, we applied FCA to investigate business cases and visualized relations among event

occurrences in terms of business performance management.

2.3. Motivations

Based on the literature review, requirements for a real-time monitoring system are identified as follows. A

business process monitoring system should represent real-time progress based on observed events throughout

any monitoring period, as well as predict subsequent possible outcomes with appropriate indicators. Also, it

should operate periodically during the progress of entire monitoring periods. Although some studies that

recommend real-time monitoring approaches using a decision tree have been conducted, (Kang et al., 2009a;

Kang et al., 2009b), they are limited in their representation of probable routes and co-occurrences of events. A

structured inference model is more efficient than are other statistical or artificial intelligence methods (Abad-

Grau and Arias-Aranda, 2006). Therefore, a visualization technique is arguably a more effective approach.

In this paper, we applied FCA to the analysis of historical process logs. By using FCA, we were able to

analyze relations between the co-occurrences of events during process execution periods and the final

performances of completed processes. Additionally, hierarchical orders in distinct patterns of co-occurrences
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were analyzed and visually represented as a concept lattice.

A conventional concept lattice, however, also has limitations similar to those of existing process

monitoring approaches, as a conventional concept lattice does not effectively represent probable routes or co-

occurrences of events. To mitigate these limitations, we developed an extended concept lattice and defined it as

a reachability lattice. When real-time process monitoring is compared to other applications of FCA, one

significant difference is that, in real-time monitoring, attributes noted as events are obtained sequentially during

the real-time progression of the process, and therefore courses can and should be traced in real-time. In this

study, probable transition information between distinct event patterns was added to the conventional concept

lattice, which was extracted from possible sequences in event generation.

3. Event-driven business process monitoring

As many of modern enterprise information systems such as enterprise resource planning (ERP) and supply

chain management (SCM) systems are adopting the concept of business process modeling and automation,

they are often called process-aware information systems (PAIS) (Dumas et al., 2005). PAIS uses business

process models to execute, monitor, and analyze core business processes. For example, SAP ERP systems

contain hundreds of business process reference models that are generally customized when the systems are

implemented for domain-specific organizations. In this paper, we propose an event-driven approach to business

process monitoring.

Before introducing the proposed framework, we first describe the assumptions of PAIS upon which the

proposed approach is based. First, PAIS supports business activities of workers on the basis of predefined

business process models. A business process model typically contains the flow of tasks and the characteristics of

each task (for instance, the worker roles, pre- and post-conditions of each task). In addition, for the purpose of

business process monitoring and analysis, the business process model indicates significant variables and events

such as cycle time and overdue. All the data are managed and controlled on the basis of business process models.

Second, PAIS continually records the results of business process execution in its system logs. Each case of

business process execution is called a business process instance, and the results of the process instance also

include the values of KPI and the information of event occurrences with their time-stamps. The two kinds of

information are the core components of the proposed process monitoring method.

Finally, event occurrences in business process execution can be intimately related to the performance of

business process, that is, the values of KPI. Therefore, it is assumed that any significant state which may affect

business performance can be chosen as an event for business process monitoring by business analysts. For

example, the complaint of a customer surely affects the satisfaction of the customer in service processes. And,

the delay of order confirmation may cause the overdue of service processes. Such significant events are recorded

in the system log of PAIS to effectively monitor and analyze business processes.

Under these assumptions and system environment, we present a business process monitoring framework

based on event processing and analysis, and then provide a formal model that can be used in the monitoring

framework.
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3.1. Framework

The framework of the proposed business process monitoring is illustrated in Figure 2. PAIS executes

business tasks based on predefined business process models. It is assumed that the significant events which may

affect the performance of the business process have already been predefined by business analysts. In addition,

the events can be mapped to the corresponding activities in the process model, which are represented in event-

activity models. Upon completion of business processes, the results of the business process execution including

event occurrences and business performances are recorded in the historical process log of PAIS. From the

system log, the results are represented in event history models and then they are used to construct a reachability

lattice, which will be introduced as a new knowledge representation model in Section 4. Based on the real-time

event occurrences, the lattices are utilized to predict their performances and control business processes in the

stage of real-time process monitoring.

Business process model

Event-activity model

Historical process log

Real-time process monitor

L1

L2

Lt

…

Performance and
route prediction

as
 t 

el
ap

se
s

reporting

Reachability lattice

Process-aware
information

systems

archiving

process
enactment

event
occurrence

a1 a2 a3

e1 1 1 1
e2 1
e3 1
e4 1

Event history model

Event state model

Figure 2: The framework of real-time business process monitoring

The overall procedure of the proposed real-time business process monitoring is illustrated in Figure 3. The

procedure is largely divided into two phases. In the first phase, business analysts decide the scope of business

process monitoring and construct a reachability lattice from the event history models. First, a user selects a

business process as a target of business monitoring. For the business process, KPI and its related events are also

selected as objects to be observed. However, there may be too many events to cope with in real-time so that

KPI-oriented event evaluation is conducted to filter events related to the KPI. The filtering aims at excluding

events having little effects on predicting the final value of the KPI. From the historical process log of the PAIS,

a reachability lattice is constructed to analyze the relations between co-occurrences of events related to the KPI
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prediction. The reachability lattice is composed of nodes connected with directed edges. Each node implies a

process pattern as co-occurrences of events, and two nodes are connected when one pattern can reach another if

an additional event is generated. The lattice is used in monitoring in the business process and predicting the KPI.

The second phase of the procedure is to event-driven monitoring in run-time. When monitoring an ongoing

business process, the progress of the business process is observed according to a set of events occurred. The

corresponding pattern of event occurrences can be derived from the reachability lattice. If the current state of

event occurrences is matched with the reachability lattice constructed in build-time, values of KPI can be

predicted along with the probable next patterns. By considering historical data for each pattern such as

frequency or average performance, practicable outcomes can be periodically analyzed based on occurred events

in real-time. These are conducted periodically when additional events are observed with the real-time progress.

Select a business process with a KPI and events

Filter events related to the KPI

Construct a reachability lattice

Observe events in an ongoing business process

Match a current state in the reachability lattice

Predict probable states with expected KPI values

Build-time

Run-time

Figure 3: Overall procedure of real-time business process monitoring

3.2. Formal model

An event is defined as the occurrence of a significant incident during the execution of any given business

process. Through the aggregation and analysis of process logs, knowledge about the quality of circumstances

occurring can be extracted (Grigori et al., 2004). In this study, we assume that correlations of event occurrences

influence performance of business processes, which are measured using KPI. Under these assumptions, the

event-activity model in Definition 3.1 is described to define the scope of occurrences for each event in a process

model.

Definition 3.1. An event-activity model of a process design is a tuple M=<E, A, S, D>.

 E={ei} is a set of events which can occur in the execution of the process.

 A={aj} is a set of activities which are executed in the process and may generate events in E.

 S=A×A is the relation between activities which restricts the execution order of two activities, e.g., s=(aj,

aj’) in S means that activity aj is executed earlier than activity aj’.

 D=E×A is the relation between events and activities representing those activities events that can be

generated; d =(ei, aj) in D means that event ei can be generated during the execution of activity aj.
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Figure 4 shows an example of a business process diagram including activities and the corresponding events.

According to the diagram, the event-activity model is described as E={e1, e2, e3, e4}, A={a1, a2, a3}, S={(a1, a2),

(a1, a3), (a2, a3)}, and D={(e1, a1), (e1, a2), (e1, a3), (e2, a1), (e3, a2), (e4, a3)}.

a1

e1, e2

a2

e1, e3

a3

e1, e4
Start End

Figure 4: Event-based process diagram

In general, it is highly likely that a KPI is influenced by only a few process events, not by all of the events

generated during any given process. To facilitate efficient monitoring, a KPI-oriented event analysis utilizes

historical process logs to identify process events that have significant effects on the KPI. Each event can be

evaluated for a given KPI c using the following metric.

2

| ( ) | / | |
( ) log

| ( ) | / | |L

I e I
eval e

I e I

 

 

In the evaluation metric, I+ and I- are the respective sets of positive and negative process instances, and

I+(e) and I-(e) are the respective subsets of I+ and I- which contain the process instances with the observation of

event e. Therefore, |I+(e)|/|I+| (and |I-(e)|/|I-|) is the probability of the process instances containing event e in

positive instances I+ (and negative instances I-). Therefore, eval(e) is the logarithmic ratio of the two

probabilities, implying a relative frequency of positive cases to negative cases. For instance, if eval(e) is zero, e

has nearly no influence on the value of KPI. If eval(e) is positive, e has a positive influence, and if negative, e

has a negative influence on KPI. Moreover, since the evaluation metric is a logarithm with base 2, eval(e)=1

implies that the probability of event occurrence e in positive instances are double that in negative instances.

After selecting a target KPI from the KPI list of a given business process, the KPI-oriented event

evaluation identifies significant events to be observed during real-time monitoring. When a process is initiated, a

process instance is created for its execution, and relevant events are stored in the process log during execution of

the process. To represent process instances and events in the log, an event history model H is formalized in

Definition 3.2.

Definition 3.2. An event history model H for an event-activity model M is a tuple, H=<L, n, c>.

 A binary function f: E→QH specifies the occurrence of an event in a historical process instance, that is,

qH∈QH={0,1}={nonoccurrence, occurrence}.

 L= QH
1×QH

2×…×QH
n(E) is a binary relation of event occurrences QH where n(E) is the number of events in

M; l∈L represents a case of event co-occurrences in process instances stored in the process log.

 n is the frequency of the process instances which contain the event co-occurrence l∈L.

 c is an average value of the target key performance indicator of the n process instances which contain l.
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Table I. Example of an event history model H

Historical event pattern
Event co-occurrence (L) Frequency of process

instances (n)

KPI

(c)
e1 e2 e3 e4

h1 0 1 0 0 22 77.1

h2 0 0 1 0 50 50.5

h3 1 1 0 0 43 73.1

h4 0 1 1 0 25 81.2

h5 1 0 1 0 33 81.5

h6 1 1 0 1 35 64.8

h7 1 1 1 0 22 92.7

h8 1 1 1 1 36 71.9

Table I shows an example of an event history model for the example process in Figure 4. Each row

contains event co-occurrences (L), the frequency of process instances for L(n), and average values of KPI (c). To

construct an event history model, completed process instances are grouped in a log according to event co-

occurrence. Subsequently, the average value of KPI is calculated from the grouped process instances. For

example, historical event pattern h1 shows that there were 22 completed process instances, which have the event

occurrence of only e2. The average value of KPI for the event pattern is 77.1.

During process execution, a process instance is monitored through events that occur up until a specific

monitoring instant. To represent temporal process monitoring, a monitoring instant t is defined as a moment at

which the event log is actively investigated for observation. A monitoring interval ∆t is a predefined time

interval or the period in which a new event is generated after occurrence of the previous event. Therefore, an

event state model O at monitoring instant t is formulated in Definition 3.3. Note that the monitored instance is

not yet completed, but rather it is still in progress in real-time, so that event occurrences are obtained only in

completed activities of the process instance.

Definition 3.3. An event state model O observed at monitoring instant t is defined as Lt, to specify event

occurrences during process execution up to time t.

 A binary function g: E→QO specifies the occurrence of an event in an ongoing process instance, that is,

qO∈QO={-1,0,1}={undetermined, nonoccurrence, occurrence}.

 Lt= QO
1×QO

2×…×QO
n(E) is a binary relation on event occurrences QO where n(E) is the number of events

in M; lt∈Lt represents a state of event occurrences in the process instance at time t.

For instance, suppose a process instance which is executed for the example model in Figure 2 has the event

state Lt = (-1, 1, 0, -1) at monitoring instant t. This means that for the ongoing process instance, only event e2 has

occurred, but e3 has not at time t, and the occurrences of e1 and e4 are not determined because activity a4 is not

complete. Note that a4 may generate e1 or e4 or both when the activity is executed completely.
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4. Reachability lattice

In this section, we explain how to construct a reachability lattice from a conventional concept lattice. As

described in previous sections, there are limitations when a concept lattice is utilized for real-time process

monitoring. Although a concept lattice graphically shows relations among event occurrences of completed

process instances, it is not suitable to describe the incremental changes in event occurrences of process instances.

In this paper, we developed an extended concept lattice, the reachability lattice, defined as a directed network

extending from the conventional concept lattice in order to represent reachable relations among event

occurrences in historical process logs.

There are four steps to constructing reachability lattices for a given business process. First, a concept

lattice is constructed from a historical process log. Second, a state is defined for each node of the concept lattice

to describe the probable status of event occurrences. Third, an undirected edge representing the hierarchical

order of states is modified to a directed edge representing reachability among the event patterns, which is

defined as a reachable order. Finally, the probability of the state being changed by the orders is estimated

according to the cumulative frequencies of the states.

Step 1: Construct a concept lattice

Based on historical process instances, as shown in Table I, a context (H, E, I) is derived to construct a

concept lattice. A set of historical instances H and a set of events E can be considered sets of objects and

attributes in a concept lattice, respectively. The relation I is defined as hIe between H and E when object h has

attribute e. For example, in Table I, h1 has the relation of events as (e1, e2, e3, e4) = (0, 1, 0, 0) when event e2 is

generated in historical process instances. This is interpreted to mean that object h1 has attribute e2, denoted as

h1Ie2. A concept lattice is constructed by following the hierarchical order of all objects in the context. Each node

on the concept lattice represents one concept (A, B) where A⊆H and B⊆E.

Step 2: Define a state

To identify a distinct event pattern for each concept, we define a state on each node to represent an event

pattern that occurred in a historical process instance. Therefore, a state can be considered as a distinct event

pattern in an event history model. On each node of the concept lattice constructed in step 1, the state is

formulated as described in Definition 4.1.

Definition 4.1. A state is defined as a condition of event co-occurrence for a corresponding concept on each

node in a concept lattice. For each concept (A, B), the state is defined as s={ei|f(ei)=1}, which equals the set of

events, B, of the concept. A is a set of event patterns that have event occurrences at least equal to or greater than

B. Therefore, state s is a common set of occurred historical instances corresponding to event patterns in A,

which is the smallest set of occurred historical instances among the event patterns in A.

Step 3: Define a reachable order

Based on execution orders between activities, probable temporal sequences are identified between
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generations of events. According to the event-activity model, when there exist (e2, a1) and (e3, a2), the

occurrence of e2 should precede that of e3 because a1 is executed before a2, which is denoted by e2 → e3. Based

on such temporal sequences, reachable orders between two states are described using a lattice as formulated in

Definition 4.2.

Definition 4.2. A reachable order means that a state can be transited to another probable state after an

additional event is generated. Suppose that there are two states sA and sB corresponding, respectively, to two

concepts CA(A, A') and CB(B, B'). The reachable order from sA to sB, denoted by sA → sB, is defined by satisfying

the following properties:

 CA is the super-concept of CB.

 eA → eB for all pairs of eA∈A' and eB∈B'\A'.

Using the reachable order, a reachable state set and a directed edge are formulated as described in

Definition 4.3.

Definition 4.3. The reachable state set of state s, denoted by S, is defined as a set of states including s and other

states satisfying reachable orders with s. Then, a directed edge is drawn from s to each of S. For example, if

there are two states sA and sB with sA → sB, the reachable state set of sA is S={sA, sB}. Therefore, the directed

edge from sA to sB and the recursive edge from sA to sA are defined.

In a conventional concept lattice, concepts are connected according to hierarchical order. Therefore, a

concept is connected to all of the concepts, including additional events, from the concept. However, when

considering temporal sequences in event generations, some hierarchical orders might not be permitted; therefore,

these edges should be eliminated from the reachability lattice. States in a reachability lattice are connected by

partial, reachable orders. Moreover, to represent the status maintained in real-time progress without generation

of additional events, we added a recursive directed edge. As a result, a reachability lattice can periodically trace

changes in co-occurrences of events as monitoring instants elapse.

Step 4: Estimate a probability of reachability

For each directed edge developed from step 3, a probability of reachability is estimated as a probability

that a state can obtain a reachable state rather than remain in the current state, along with the directed edge.

Using the frequency of each event pattern corresponding to the state in Table I, a probability of reachability is

estimated as follows.

Definition 4.4. On each directed edge, probability of reachability r is defined as a probability that a state can

obtain a reachable state. Suppose state s0 has a reachable set S={s1,…,sk}. The probability of reachability from

s0 to si, denoted by ri (0≤i≤k), is estimated using the following formula, where ni is the frequency of historical

process instances corresponding to si.
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Figure 5 shows the four steps in the construction of a reachability lattice using the data in Table I. In the

concept lattice of Step 1, each node, a so-called concept, is composed of two sets of objects and attributes,

which correspond to historical event patterns (h) and occurred events (e), respectively. These concepts are

connected with undirected edges as hierarchical orders, which represent only relations of inclusion. The

concepts at the bottom of a lattice are more detailed and have more attributes than those at the top. In Step 2, we

first define a state of occurred events that can be matched to an ongoing instance. As execution periods elapse,

additional events are generated, which means that the state of an instance changes to another state on an ongoing

basis. However, existing hierarchical orders might not enable these changes. Therefore, in Step 3, we modified

hierarchical orders as reachable orders to better represent the progress of events in real-time. Subsequently in

Step 4, a probability of reachability is estimated using the frequency of each state as it corresponds to the

historical event pattern.
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Figure 5: Constructing reachability lattice from concept lattice
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Figure 6: Basic notions of reachability lattice

Figure 6 shows basic notions of the reachability lattice extended from the concept lattice. The original state

can remain unchanged or acquire another state, such as those with reachable orders represented as directed

edges. Possible transitions are estimated as probabilities for each directed edge. Compared with a conventional

concept lattice with undirected hierarchical orders, a reachability lattice better represents reachability among

historical event patterns.

5. Applications

In this section, we illustrate how a reachability lattice can be applied to real-time process monitoring. At a

monitoring instant t, an event log of an ongoing process instance is obtained as Lt, which is an incrementally

increasable set of events in midcourse. During entire process execution periods, Lt is monitored periodically as t

elapses. When the observed partial event log Lt is obtained, it is possible to diagnose a current state and predict

next probable states using a reachability lattice. First, a state of the ongoing process instance at t is retrieved as

st={ei|g(ei)=1 in Lt}, which is a set of events that occurred up to t.

5.1. Performance prediction

Based on Lt, an expected performance upon completion is predicted by considering reachable states S of st

corresponding to Lt. When st is obtained, the possible state is any in a reachable state set, which is monitored

periodically throughout the generation of additional events. The purpose of KPI prediction is to foresee changes

in the expected value of the target KPI along with reachable orders.

The expected value of target KPI ct is defined as the predicted value of KPI when the current state st is

maintained through completion. It is predicted as the average KPI value of historical instances h for the state

corresponding to the event log of the ongoing process instance Lt.

At the next monitoring instant t+∆t, expected value of target KPI ct+∆t is defined as the average value of

KPI when the possible state at t+∆t is maintained until completion. This value is predicted as follows. Suppose

that an ongoing process instance is monitored in st. If the instance is executed continuously after t, st+∆t can be

one of the following two cases: 1) If any additional event has not yet been generated up to t+∆t, the current state

st is maintained so that st+∆t is equal to st. 2) If an additional event has been generated in the monitoring interval

∆t, the probable next state st+∆t is a union of st and the occurred event satisfying temporal sequences with events
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in st. Therefore, st+∆t becomes st∪{et+∆t} that et+∆t satisfies et → et+∆t for all et in st. After taking these two cases

into consideration, the ongoing instance with st can reach one state in the reachable state set St+∆t of st, which can

be described as follows:

St+∆t = {st}∪{st+∆t|st+∆t= st∪{et+∆t} that satisfies et → et+∆t for ∀et∈st}

Then, ct+∆t can be estimated according to the weighted sum of reachabilities to states in St+∆t and the

average values of KPI from the states. The pseudo-code of the real-time KPI prediction algorithm is described

as follows:

1: PROCEDURE KPI_Prediction(Lt)

2: st ← state st from observed event log Lt;

3: St+Δt ← reachable states of st in reachability lattice;

4: ct ← average value of KPI in st;

5:
t t

t t i i
i S

c rc





  , where ri is the probability on reachability from st to si (∈St+Δt) and ci is the average value of KPI in si;

6: return ct and ct+Δt;

5.2. Route prediction

Along with reachable orders, we can predict possible routes by periodically tracking the sequences of

reachable states as an ongoing process instance progresses with additional occurrences of events. We defined a

route as an ordered set of states and their reachable orders, excluding a recursive reachable order, based on the

assumption that an additional event should be generated at each monitoring interval. From st, each route is

retrieved by following the reachable orders to other states. Each state has an average KPI value when the current

status of an event generation is maintained until completion. Then, we can track probable changes in the

expected value of the target KPI after t, along with the sequences of reachable states in the route.

The purpose of tracking the expected value of KPI is to monitor risks that might be present in probable

progress. In our research, real-time monitoring focuses on the expected value of the KPI when the ongoing

process instance is completed.

If an acceptable threshold for KPI is given, practicable routes from st can be categorized into three cases:

1) Routenon-risk: the expected values of the target KPI are greater than the threshold. 2) Routepartial-risk: the

expected values of the target KPI can be lower than the threshold in the course of the route, but they become

higher than the threshold by the end of the route. 3) Routerisk: the expected values of the target KPI are lower

than the threshold and they cannot recover by the end of the route.

If the goal of a monitoring policy is to maintain the expected value of the target KPI above the threshold,

Routepartial-risk and Routerisk should be monitored continuously, and appropriate reactions should be carried out

after each monitoring instant. On the contrary, Routenon-risk does not have to be monitored continuously. In case

of Routepartial-risk, additional resources might be allocated to subsequent activities after monitoring instants in

order to promote transition to a reachable state and thereby produce a better value of KPI. Ideally, the midcourse

state of Routepartial-risk with a lower value of target KPI will progress to a reachable state so that it can produce a

value that is better than the threshold. In the case of Routerisk, however, the expected value of the target KPI is

difficult to achieve if it has already decreased because the route does not have any reachable state of



Published in Industrial Management and Data Systems, Vol. 111, No. 5, Jun 2011, pp. 652-674.

improvement beyond the threshold. Therefore, it may be better to cancel the ongoing process at the monitoring

instant as soon as the expected value of the target KPI decreases. If the process is difficult to cancel, the process

should be re-designed or a meta-process should be substituted in order to avoid the ongoing route.

6. System implementation with an example scenario

In this section, we present an example scenario to describe how the proposed approach can be applied to

business process monitoring with a prototype system. Using the prototype system with the example scenario, the

historical process log of a business process was analyzed to construct the reachability lattice, which was in turn

used to monitor an ongoing instance of the process.

The example scenario was simplified from an existing real-world business process in a Korean

telecommunications company which provides network service provisioning. To improve the quality of customer

service, the telecom company contracts service level agreements for service delivery time. If the installation of

network services is delayed more than three days from the contracted date, the company has to pay a penalty for

the delay. For this reason, on-time network service delivery is critical in the service provisioning process, and

the company monitors the KPI of “on-time delivery rate” for all service provisioning processes in the country to

reduce penalties for overdue service delivery. Events related to “on-time delivery rate” were filtered as

monitoring objects using the evaluation metric eval(e) described in Section 3. The related events include

‘customer's schedule change’ (e1), ‘work confirmation delay’ (e2), ‘facility failure’ (e3), ‘urgent processing’ (e4),

‘change to experienced worker’ (e5), ‘part shortage’ (e6), and ‘rapid confirm’ (e7).

Figure 7 shows a business process diagram in BPMN (OMG, 2008) of the example scenario composed of

eight activities and the corresponding events. The business process is composed of eight activities: ‘Order

Entry,’ ‘Telephone Customer,’ ‘Assign a Worker,’ ‘Install Normal Cable,’ ‘Report Normal Installation,’ ‘Install

Fiber-optic Cable,’ ‘Report Special Installation,’ and ‘Confirm Service.’ During execution of each activity,

events can be generated as described in Figure 7. For example, the activity of ‘Assign a Worker’ can generate

two filtered events e1 and e2, ‘customer’s schedule change’ and ‘work confirmation delay.’

Telephone
Customer

{e1}

Assign a
Worker
{e1, e2}

Install
Normal Cable

{e1, e3, e4}

Install Fiber-
optic Cable
{e1, e5, e6}

XOrder Entry

Start

Report Work
{e1, e3, e4}

Report Work
{e1, e5, e6}

Confirm
Service
{e1, e7} End

X

Figure 7: Example scenario of network service provisioning

The historical process log of the example scenario was designed according to the event history model

described in Section 3. As shown in Figure 8, the event history data of the example scenario is loaded into our

prototype system. The prototype system was developed on the open-source process mining framework, ProM

(van der Aalst et al., 2007). In our prototype, historical process log data is first converted to an XML file, called

MXML format, which can be used as an input file of the ProM framework.

Figure 8 also shows settings for event evaluation and monitoring scope of a reachability lattice. If users
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give the rates of positive and negative process instances, denoted by r+ and r-, respectively, events are evaluated

using the metric introduced in Section 3. Subsequently, users can filter the events for construction of the

reachability lattice. The positive and negative process instances, C+ and C-, can be extracted from process

instances I as follows:

I+={i∈I |c(i)≥clb where clb is the minimum value satisfying Pr(c≥clb)≤r+} and

I-={ i∈I |c(i)≤cub where cub is the maximum value satisfying Pr(c≤cub)≤r-}.

Figure 8: Setting for reachability lattice construction

Figure 9 shows the reachability lattice constructed from the example history process log in Figure 8. The

whole lattice shown in Figure 9 (a) can be reduced according to preferences in the scope of business process

monitoring. For example, in the case of risk management, users may want to view event patterns with lower KPI

values. On the contrary, if managers intend to improve performance, they are also interested in event

occurrences with higher KPI values. Figures 9 (b) and (c) show sub-lattices which have been extracted from the

whole lattice according to thresholds of monitoring scope. Such extraction of sub-lattices can help managers to

recognize relations of events in a more comprehensible manner.
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(a) whole reachability lattice

(b) risk lattice (c<cub=72) (c) Success lattice (c>clb =70)

Figure 9: Visualization of reachability lattices: (a) whole reachability lattice, (b) risk lattice and (c) success

lattices.

During process execution, the ongoing process instance is observed periodically during monitoring instants.

Suppose that e2 and e3 were generated at monitoring instant t. Based on the event occurrence, real-time process

monitoring is implemented using a part of the reachability lattice as shown in Figure 10. The figure shows all

possible probable routes with reachable states for the observed ongoing process instance through completion.
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Figure 10: Visualization of possible states with predicted performances for a given event occurrence

According to the given event occurrence st, a reachable state set is retrieved as St+Δt={{e2,e3}, {e2,e3,e4},

{e1,e2,e3}, {e2,e3,e7}}, since it is composed of st itself and states satisfying reachable orders; e2 and e3 could be

generated earlier than could e1, e4 or e7 in the process model. The next states of St+Δt have average KPI values of

68.9, 81.5, 61.3, and 71.1, respectively. In the example scenario shown in Figure 7, the manager of service

provisioning will consider performance improvements. Possible actions should be taken to trigger events of

‘urgent processing’ (e1) or ‘rapid confirm’ (e7), which can increase average performances up to 81.5 and 71.1,

respectively.

Five probable routes from st are derived and summarized with the expected values of KPI in Table II. If an

allowable threshold is defined as 75%, three Routepartial-risk and two Routerisk should be observed closely to assure

higher customer satisfaction.

Table II. Route prediction with reachable orders and expected values of target KPI

Route
category

Reachable order Expected values of target KPI
(%, * means lower than threshold)

Routepartial-risk

{e2,e3}→{e2,e3,e4}→{e2,e3,e4,e7}→{e1,e2,e3,e4,e7} 68.9*→81.5→71.3*→79.8

{e2,e3}→{e2,e3,e4}→{e1,e2,e3,e4}→{e1,e2,e3,e4,e7} 68.9*→81.5→67.5*→79.8

{e2,e3}→{e1,e2,e3}→{e1,e2,e3,e4}→{e1,e2,e3,e4,e7} 68.9*→61.3*→67.5*→79.8

Routerisk

{e2,e3}→{e2,e3,e7}→{e1,e2,e3,e7} 68.9*→71.1*→72.8*

{e2,e3}→{e1,e2,e3}→{e1,e2,e3,e7} 68.9*→61.3*→72.8*
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7. Comparison to other monitoring techniques

To realize business process monitoring, so-called business activity monitoring (BAM) practitioners and

researchers have introduced a variety of techniques such as statistics, optimization and artificial intelligence.

Despite those efforts, existing approaches have not satisfied industrial managers as effective decision support

tools. One of the reasons is that most of the techniques have focused on discovering the best solutions, rather

than presenting easy and comprehensible visualization of processes and outcomes. In BAM, visualization of

probable situations has great significance in final decisions, because business environments are quite risky and

dynamic. Moreover, if it is possible to illustrate probable situations to business managers based on the real-time

progress of key business processes and historical data, such comprehensive analysis is helpful for making

decisions on business problems.

In addition to FCA, there is another graphical and mathematical technique for business monitoring known

as Petri nets. In the research domain of business process modeling and analysis, Petri nets such as WF-nets are

often used to design behavior models of business processes (van der Aalst and van Hee, 2004) and to analyze

business log data for business process mining and monitoring (van der Aalst et al., 2007). Although both Petri

nets and FCA are graphical tools that provide mathematical formalisms, they each have a slightly different focus.

Petri nets propose effective mathematical analytics to design and analyze behavior models of business cases,

while FCA supports the simplification and visualization of relations among cases in hierarchical graphical

models. For this reason, Petri nets are often used to extract business process models from historical business

cases (Alves de Medeiros et al., 2007); however, they have actually been applied to business monitoring in

relatively few studies. For instance, Du et al. (2009) proposed a graphical model for defining and monitoring the

behavior of e-commerce workflow. Cicirelli et al. (2010) suggested the dynamic reconfiguration of service

processes according to real-time progress. A real-time scheduling method was proposed by Julia et al. (2008),

which aimed to allocate resources to obtain acceptable scenarios according to specific sequences of activities.

Different from business process miners who aim at discovering behavioral models, our research assumes

known behavioral models, which may be represented by Petri nets, EPC (Event-driven Process Chain) models,

or UML activity diagrams. As a result, the goal of our research is to provide the simplified and comprehensible

visualization of probable situations along with the expected values of target performance indicators, rather than

to analyze business process models. For these purposes, FCA is a strong tool compared to other graphical tools

and their many applications, as introduced in Section 2.2.

To analyze historical business data and support decision-making for the purpose of improving the

performance of business processes, stochastic, optimization, and data mining techniques have also been adopted

in business process monitoring. For example, some researchers have proposed stochastic prediction techniques

for decision-making and optimization of resource allocation to ensure high performances of business processes

(Ha et al., 2006; Zhou and Chen, 2003). These have aimed at determining optimal or heuristic solutions, and

they suggest predicted or simulated outcomes. Such optimization-based approaches are more helpful for

business process improvements and decision support on numerical analysis. Nevertheless, to integrate them into

real-time monitoring environments, optimization should be conducted iteratively at subdivided monitoring

intervals, even though the dynamic environment of business process execution can be modeled in mathematical
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programming. In contrast, our FCA-based proposal focuses on indirectly supporting the decision-making of

industrial managers by visualizing all probable scenarios in progress, rather than finding optimal solutions.

Meanwhile, data mining techniques like hierarchical clustering can also be used to generate hierarchy-

representing knowledge in large cases. Nevertheless, FCA is more helpful than other hierarchical agglomerative

clustering methods because of its traceability (Cimiano et al., 2005). FCA not only generates specific clusters

and routes, but it also provides an intentional description and thereby contributes to improved intuition among

users.

8. Conclusions

In this paper, we proposed a novel approach for real-time monitoring of business processes through the

application of FCA. FCA was introduced to investigate historical process logs and to visualize relations among

event patterns. Furthermore, a concept lattice, which is often used in FCA, was extended into a reachability

lattice to overcome limitations in existing process monitoring methods: the conventional concept lattice does not

consider the possible flows in process models, nor does it contain the notion of probabilities of transitions

between event states. Thus the construction of reachability lattices and their application to real-time process

monitoring were formulated. A prototype system was implemented on the ProM framework and used to

illustrate a simplified real-world example scenario.

One of the main contributions of this paper lies in the development of a real-time monitoring approach of

ongoing processes. While existing monitoring methods evaluate final outcomes upon process completion, the

proposed method can predict final results during process execution. By monitoring an event as the occurrence of

a significant incident during process execution, effective prediction of process outcomes can be achieved. We

also provide a new knowledge representation scheme, called a reachability lattice, to better visualize probable

routes in event co-occurrences during progress of business processes. A reachability lattice is differentiated from

a conventional concept lattice as follows. First, reachability lattices represent the constraints of event

occurrences, by removing unallowable sequences of event occurrences of a process model. The second

difference is the practical utilization of a reachability lattice. Whereas the conventional use of concept lattices

focuses on matching similar cases, reachability lattices can be used to predict expected values of KPI after

considering historical cases with event occurrences in ongoing business processes. In other words, the

reachability lattice determines the hierarchical structure of event occurrences to represent knowledge extracted

from historical logs, and hence the reachability lattice enhances the efficient investigation of historical logs by

visualizing them and focusing only on probable event states in real-time progress. Overall, the proposed method

is significant for visualizing highly probable routes of generated events and for predicting expected

performances of ongoing business processes in order to support real-time decision-making.

There remain several issues to be addressed in further research. The effective selection of events is an

important issue, as the performance of real-time monitoring is greatly dependent on the events in a reachability

lattice. Another issue is how to handle any unobserved event occurrences. Some significant incidents may occur

even though they cannot be identified in the historical process logs on which our proposed prediction method is

based.
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