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Ho-Kashyap Procedure (DHS 5.9.1) 
 

Read Introduction in DHS 5.9.1. Check out the differences between the Perceptron and 

the MSE procedures in the case of linearly separable vs. nonseparable problems. 

 

Task: Find w and b simultaneously 

 

Yw = b >0 

 

J(w,b)=|| Yw – b ||2  

Minimize J w.r.t. w and b with constraint b>0 

 

w J = 2 YT(Yw – b) 

b J = -2 (Yw – b) 

w=Y†b => w J = 0 

 

Minimize J w.r.t. b, with w=Y†b, subject to constraint b>0 

 

Start with b>0 

Only add positive elements when updating b 

 

Gradient descent: 

b(k+1)=b(k)-1/2[b J - |b J|]  >0 

 

1/2[a-|a|] = 0 if a0 

         a if a<0        to make it sure a positive update 

|v| means component-wise |.| => |v|=[ …, |vi|, …]T 

 

Resulting Algorithm 

b(0)>0 but otherwise arbitrary 

w(k)=Y†b(k) 

Let e(k)=Yw(k) – b(k) 

b(k+1)=b(k) + [e(k)+|e(k)|] 

>0 

This is Ho-Kashyap Pseudoinverse.  
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Notes on Ho-Kashyap 

1. Converges if samples are linearly separable (proved in DHS 5.9.2) 

2. Generally required fewer steps to converge than Perceptron. However, each step 

requires more operations than Perceptron. 

3. Update entire b and w, for both classes in each iteration 

4. Nonseparability of data is indicated in the course of iterating. If e(k)<=0, not 

linearly separable. 

 

Appropriate  

 

Option 1 

0<<2 

 converges fastest 

 

w(0)=(YTY)-1YTb(0) 

and b(0)=1 

 solution w(k) is the best linear square fit for a given b(k) 

 

 

Option 2 

0<<||YTY||-1 

 

||.|| can be any of the following  

||A||=∑ ห𝑎௜௝ห௜௝  

||A||=max
௜

∑ ห𝑎௜௝ห
ே
௝ୀଵ  

||A||=tr(A𝐴∗)
భ
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భ

మ 

 This gives the simplest implementation but converges slower. 
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Ho-Kashyap Convergence (DHS 5.9.2) 

If samples are linearly separable and if 0<<1  

 converges to solution in finite no of steps 

 could add a halting condition for when prototypes are correctly classified 

 

can show either 

e(k)=0 within finite no of steps -> algorithm terminates with a solution vector 

or e(k)-> 0 as k->  => Yw(k)>0 after finite no of steps 

 

Same convergence properties for linearly separable prototypes 

Different options on parameter  

 

Behavior of Ho-Kashyap Algorithm for Nonseparable Prototypes (DHS 5.9.3) 

 

- If obtain an e(k) or converge to an e(k) such that e(k)0 and no components of 

e(k) are positive, then the prototypes are not linearly separable. 

- If the prototypes are not linearly separable, then either the algorithm will yield 

an e(k) such that e(k)0 with no positive components, or will asymptotically 

approach it: e(k)->e()0 with no components of e() being >0 

 

 

 

 

 

 

 

We have covered so far (see Table 5.1) 

1. Fixed Increment in Perceptron 

2. Variable Increment in Perceptron 

3. Relaxation in Perceptron 

4. Pseudo-Inverse 

5. Windrow-Hoff 

6. Ho-Kashyap 

* Stochastic Approximation and Linear Programming (i.e., Simplex Algorithm) are not 

covered here. 
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Various Descent Algorithms 
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Support Vector Machines (or Maximum Margin Classifier) (DHS 5.11) 
 

Concepts 

- Recall linear machines with margins. 

- SVMs are very much similar, but rely on preprocessing the data to represent 

patterns in a high dimension (much higher than original feature space) 

- Typically a nonlinear mapping function (or a kernel function) (.)  is used. 

Thus transform a pattern kx  to )( kk xy  . 

- A linear discriminant can be expressed as k
T

k ywyg )(  in an augmented 

space. 

- The goal of a SVM is to find a separating hyperplane with the largest margin.  

- The support vectors are the training samples that define optimal separating 

hyperplane. 

- The support vectors are the most difficult patterns to classify. 

- See Fig. 5.19 
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Methods 

- Modify the familiar Perceptron algorithm: train with the current worst-classified 

patterns. Of course finding the worst-classified patterns is difficult 

(computationally expensive) 

- Training an SVM 

 Use the method of Lagrange Multipliers (not the focus of this class) 

 The cost function 
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Example 

- Example 2 (DHS p. 264) 

 

- Try “svmtrain” under Bioinformatics Toolbox of Matlab 


