
KHU-BME

Pattern Classification

Lecture 07

 1

Ho-Kashyap Procedure (DHS 5.9.1)

Read Introduction in DHS 5.9.1. Check out the differences between the Perceptron and

the MSE procedures in the case of linearly separable vs. nonseparable problems.

Task: Find w and b simultaneously

Yw = b >0

J(w,b)=|| Yw – b ||2

Minimize J w.r.t. w and b with constraint b>0

w J = 2 YT(Yw – b)

b J = -2 (Yw – b)

w=Y†b => w J = 0

Minimize J w.r.t. b, with w=Y†b, subject to constraint b>0

Start with b>0

Only add positive elements when updating b

Gradient descent:

b(k+1)=b(k)-1/2[b J - |b J|] >0

1/2[a-|a|] = 0 if a0

 a if a<0 to make it sure a positive update

|v| means component-wise |.| => |v|=[…, |vi|, …]T

Resulting Algorithm

b(0)>0 but otherwise arbitrary

w(k)=Y†b(k)

Let e(k)=Yw(k) – b(k)

b(k+1)=b(k) + [e(k)+|e(k)|]

>0

This is Ho-Kashyap Pseudoinverse.

KHU-BME

Pattern Classification

Lecture 07

 2

Notes on Ho-Kashyap

1. Converges if samples are linearly separable (proved in DHS 5.9.2)

2. Generally required fewer steps to converge than Perceptron. However, each step

requires more operations than Perceptron.

3. Update entire b and w, for both classes in each iteration

4. Nonseparability of data is indicated in the course of iterating. If e(k)<=0, not

linearly separable.

Appropriate 

Option 1

0<<2

 converges fastest

w(0)=(YTY)-1YTb(0)

and b(0)=1

 solution w(k) is the best linear square fit for a given b(k)

Option 2

0<<||YTY||-1

||.|| can be any of the following

||A||=∑ ห𝑎௜௝ห௜௝

||A||=max
௜

∑ ห𝑎௜௝ห
ே
௝ୀଵ

||A||=tr(A𝐴∗)
భ

మ = ቂ∑ ห𝑎௜௝ห
ଶ

௜௝ ቃ

భ

మ

 This gives the simplest implementation but converges slower.

KHU-BME

Pattern Classification

Lecture 07

 3

Ho-Kashyap Convergence (DHS 5.9.2)

If samples are linearly separable and if 0<<1

 converges to solution in finite no of steps

 could add a halting condition for when prototypes are correctly classified

can show either

e(k)=0 within finite no of steps -> algorithm terminates with a solution vector

or e(k)-> 0 as k->  => Yw(k)>0 after finite no of steps

Same convergence properties for linearly separable prototypes

Different options on parameter 

Behavior of Ho-Kashyap Algorithm for Nonseparable Prototypes (DHS 5.9.3)

- If obtain an e(k) or converge to an e(k) such that e(k)0 and no components of

e(k) are positive, then the prototypes are not linearly separable.

- If the prototypes are not linearly separable, then either the algorithm will yield

an e(k) such that e(k)0 with no positive components, or will asymptotically

approach it: e(k)->e()0 with no components of e() being >0

We have covered so far (see Table 5.1)

1. Fixed Increment in Perceptron

2. Variable Increment in Perceptron

3. Relaxation in Perceptron

4. Pseudo-Inverse

5. Windrow-Hoff

6. Ho-Kashyap

* Stochastic Approximation and Linear Programming (i.e., Simplex Algorithm) are not

covered here.

KHU-BME

Pattern Classification

Lecture 07

 4

Various Descent Algorithms

KHU-BME

Pattern Classification

Lecture 07

 5

Support Vector Machines (or Maximum Margin Classifier) (DHS 5.11)

Concepts

- Recall linear machines with margins.

- SVMs are very much similar, but rely on preprocessing the data to represent

patterns in a high dimension (much higher than original feature space)

- Typically a nonlinear mapping function (or a kernel function) (.) is used.

Thus transform a pattern kx to)(kk xy  .

- A linear discriminant can be expressed as k
T

k ywyg )(in an augmented

space.

- The goal of a SVM is to find a separating hyperplane with the largest margin.

- The support vectors are the training samples that define optimal separating

hyperplane.

- The support vectors are the most difficult patterns to classify.

- See Fig. 5.19

KHU-BME

Pattern Classification

Lecture 07

 6

Methods

- Modify the familiar Perceptron algorithm: train with the current worst-classified

patterns. Of course finding the worst-classified patterns is difficult

(computationally expensive)

- Training an SVM

 Use the method of Lagrange Multipliers (not the focus of this class)

 The cost function

]1[
2

1
),(

1

2 



n

k
k

T
kk ywzwwL  with 1kz

 Minimize L w.r.t. the weight vector w , and maximize it w.r.t. the

multipliers 0k

 This problem can be reformulated through the Kuhn-Tucker condition as

Maximizing  


n

jk
k

T
jjkjk

n

k
i yyzzL

,1 2

1
)( with the constraints





n

k
kkz

1

0 , 0k , nk ,...,1

Example

- Example 2 (DHS p. 264)

- Try “svmtrain” under Bioinformatics Toolbox of Matlab

