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Multi-category Generalization: Multi-class Perceptron (DHS 5.12) 
 
Decision Rule: 
 
gi(x)=w(i)Tx 
if gi(x)> gj(x) for all j¹i, assign x to Si  
   
 
Algorithm (given in class): 
For each prototype y(i) 
 
If y(i) Î Si but machine assigns it to Sj 
Update for Si, w(i)(k+1)=w(i)(k)+ay(i) 
 
Update for Sj, w(j)(k+1)=w(j)(k)-ay(i) 
 
w(l)(k+1)=w(l)(k) all  l¹i,j    (DHS p. 267, Eq. (115)) 
 
If machine classifies y(i) correctly, do not update the prototype. 
 
The algorithm is guaranteed to converge (for a fixed increment). 
 
Convergence of algorithm is proved in DHS Sec. 5.12.2 (not covered in class) 
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Absolute Correction (one example): 
 

If machine puts )(k

m
y  into Sj 

Want to: 
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Guarantees re-classification of )(k
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y  will not result in the same error 
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Doesn’t guarantee correct classification of )(k

m
y  after 1 update. 
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Relaxation Procedures (DHS 5.6, p. 235) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Augmented space incorporates a safety margin. 
Gives a smoother surface than Perceptron 
 

Perceptron: J(w)=å
Î

-
Yy

T yw )(    (DHS p. 227, Eq. (16)) 

New cost: J(w)=å
ÎYy

T yw 2)(    (DHS p. 235, Eq. (32)) 

 
See Fig. 5.11 for the gradients of various J(w)’s 
 
Relaxation 
Cost function with margin: 
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1)(    (DHS p. 235, Eq. (33)) 

b is a margin factor 
 
Y represents the set of prototypes for which wTy£b 
if Y=Æ then J(w)=0 
J(w)³0 
J(w)=0 only of wTy³b, "y 
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The gradient of the cost function with margin: 
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(Appendix A2.4 for vector matrix calculus) 
 
Gradient Descent: 
 
w(k+1)=w(k)-a(k)ÑJ(w) 
 
Relaxation Procedure 
 
i) One at a time = Single-sample Relaxation with Margin (DHS, p. 236 Algorithm 9) 
w(0)=arbitrary 

w(k+1)=w(k)- a(k) k

k

k
T

y
y

byw
2

-
    if wT(k)yk£b 

w(k+1)=w(k)  if wT(k)yk>b 
 
 
ii) Many at a time = Batch Relaxation with Margin (DHS, p. 236 Algorithm 8) 
If w(0)=arbitrary 
 

w(k+1)=w(k)-a(k) å
-

y
y

bywT

2  
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Compare to Perceptron Fraction Correction 
 

w(k+1)=w(k)- l 2[ ]
T
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Relaxation – move fraction a of distance from w(k) to hyperplane wT(k)yk-b=0 

- a=1 => move onto hyperplane 
- a<1 => underrelaxation 
- a>1 => overrelaxation 

 
Relaxation Rule Convergence 

- Linearly separable prototypes 
- Either converges to a solution in a finite number of steps 
- Or approaches a w on the boundary of wTy³b solution region. 
- If b>0, at some point w will eventually enter wTy>0 region and remain in that 

region at infinitum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
So far,  
Previous Methods - Error Correcting  

- Update only for misclassified samples 
- Search for error-free solutions 
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Minimum Squared-Error Procedures: Pseudo-inverse (DHS 5.8) 
- Again a 2-class problem 
- Assume reflected prototypes 
- Minimum mean square error (MSE) technique (=> Least Mean Squares, LMS). 
- Consider all samples 
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Pseudo-inverse (continues) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b = arbitrary, will get a solution whether data is separable or not, but no guarantee it is a 
good solution for separating prototypes. 
 
If b is carefully chosen, we may be able to get a good discriminant function for both 
separable and non-separable cases.   
 
MSE solution depends on the target vector b 
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Different choices for b give the solution different properties 
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Windrow-Hoff (DHS 5.8.4) 
 
Use this cost function, J(w)=||Yw-b||2 

b=target vector 
 
Advantages over pseudoinverse:  

- Pseudoinverse can be very large 
- It could be singular 
- It can have truncation problems, errors. 

 
Here   

– One-at-a-time update 
– Feedback scheme to reduce truncation errors. 

 
)(2 bwYYJ T -=Ñ  

Rule 1=> w(k+1)=w(k)+a(k)YT(Yw(k)-b)      for all samples 
or 

 Rule 2=> w(k+1)=w(k)+a(k)[b(k)-wT(k)yk] yk   considering the samples 
sequencially 
         w(0)=arbitrary 
 
The size of YTY is smaller than Y+, storage requirements are less. 
Update for all prototypes (misclassified & correctly-classified) 
Usually updates never cease 
a(k)=a(0)/k for convergence. 
Requires a good b. 

 


