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Multi-category Generalization: Multi-class Perceptron (DHS 5.12)

Decision Rule:

gi(x)=w""x

if gi(x)> gj(x) for all j#i, assign x to S;

Algorithm (given in class):

For each prototype y(i)

It y(i) € S; but machine assigns it to S;
Update for S;, w(k+1)=w"(k)+ay?

Update for S;, w(j)(k+1)=w0)(k)-ay(i)

wOk+1)=w(k) all 1] (DHS p. 267, Eq. (115))
If machine classifies y(i) correctly, do not update the prototype.

The algorithm is guaranteed to converge (for a fixed increment).

Convergence of algorithm is proved in DHS Sec. 5.12.2 (not covered in class)
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Absolute Correction (one example):

If machine puts yf:) into S;

Want to:
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Doesn’t guarantee correct classification of yin after 1 update.
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Relaxation Procedures (DHS 5.6, p. 235)

Augmented space incorporates a safety margin.

Gives a smoother surface than Perceptron

Perceptron: J (E)ZZ(—V_VT ) (DHS p. 227, Eq. (16))
yer
New cost: J(w)=Y_ (w' )* (DHS p. 235, Eq. (32))

yer
See Fig. 5.11 for the gradients of various J(w)’s

Relaxation

Cost function with margin:

J(w) = lzm—:b]z (DHS p. 235, Eq. (33))
253 |y

b is a margin factor

Y represents the set of prototypes for which w'y<b
if Y= then J(w)=0

J(w)=0

J(w)=0 only of w'y>b, Vy
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The gradient of the cost function with margin:
(w'y- b)

oI

(Appendix A2.4 for vector matrix calculus)

VJIw=>-—="=

Gradient Descent:

w(k+1)=w(k)-o(k)VI(w)

Relaxation Procedure

i) One at a time = Single-sample Relaxation with Margin (DHS, p. 236 Algorithm 9)
w(0)=arbitrary

w(k+1)=w(k)- a(k) = v ifWRusb

Hy H

w(k+D)=w(k) ifw'()yb

ii) Many at a time = Batch Relaxation with Margin (DHS, p. 236 Algorithm 8)
If w(0)=arbitrary

_y_

bt

w(k+1)=w(k)-ak) >
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Compare to Perceptron Fraction Correction

Wy,
2

w(k+D)=w(k)- A [ Iy,

|,

Relaxation — move fraction a of distance from w(k) to hyperplane wT(k)yk-b=0
- o=l => move onto hyperplane
- o<l => underrelaxation

- o>1 => overrelaxation

Relaxation Rule Convergence
- Linearly separable prototypes
- Either converges to a solution in a finite number of steps
- Or approaches a w on the boundary of w' y>b solution region.
- If b>0, at some point w will eventually enter w'y>0 region and remain in that

region at infinitum.

So far,
Previous Methods - Error Correcting
- Update only for misclassified samples

- Search for error-free solutions
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Minimum Squared-Error Procedures: Pseudo-inverse (DHS 5.8)
- Again a 2-class problem
- Assume reflected prototypes
- Minimum mean square error (MSE) technique (=> Least Mean Squares, LMS).

- Consider all samples
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Pseudo-inverse (continues)

b = arbitrary, will get a solution whether data is separable or not, but no guarantee it is a

good solution for separating prototypes.

If b is carefully chosen, we may be able to get a good discriminant function for both
separable and non-separable cases.

MSE solution depends on the target vector b
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Different choices for b give the solution different properties

Example 1: Constructing a linear classifier by matrix pseudoinverse

Suppose we have the following two-dimensional points for two categories: wi:
(1,2)" and (2,0)", and wy: (3,1)" and (2,3)", as shown in black and red, respectively,
in the figure.

Our matrix Y is therefore

1 1 2
1 2 0
Y= 1 3
-] -3 -3

and after a few simple calculations we find that its pseudoinverse is

5/4 13/12 3/4 7/12
Y= lin(l)(Y'Y +e) 'Y = -1/2 -1/6 -1/2 -1/6
o 0o -1/3 0 -1/3

4
3
R,
1
0
0 L %
1
Four training points and the decision boundary a* [ = = 0, where a was found

T2

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, ie., b = (1,1,1,1)t. Our solution is
a=Y'b = (11/3,-4/3,-2/3)!, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.
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Windrow-Hoff (DHS 5.8.4)

Use this cost function, J(w)=|[Yw-b]*

b=target vector

Advantages over pseudoinverse:
- Pseudoinverse can be very large
- It could be singular

- It can have truncation problems, errors.

— One-at-a-time update

— Feedback scheme to reduce truncation errors.

VJ=2Y"(Yw-b)
Rule 1=> w(k+1)=w(k)+a(k)Y (Yw(k)-b) for all samples
or
Rule 2=> w(k+1)=w(k)+a(k)[bk)-w"(K)yx] yk considering the samples
sequencially

w(0)=arbitrary

The size of Y'Y is smaller than Y”, storage requirements are less.
Update for all prototypes (misclassified & correctly-classified)
Usually updates never cease

a(k)=a(0)/k for convergence.

Requires a good b.

Figure 5.17: The LMS algorithm need not converge to a separating hyperplane, even
if one exists. Since the LMS solution minimizes the sum of the squares of the distances
of the training points to the hyperplane, for this exmple the plane is rotated clockwise

compared to a separating hyperplane.



