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Multiclass Problems: K classes (K>2 classes)

Let’s try to build a K-class discriminant by combining a number of 2-class discriminant
functions. But this faces some difficulties.

Method I: Try (K-1) Classifiers

S, vs S_k decisions

Solve a two-class problem by separating points into Sk or Not Sk Regions.

This 1s also known as a one-vs.-the rest classifier.

(Fig. 4.2 C. B.) This method leads to regions of unclassified regions.
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Method II: Try K(K-1)/2 Binary Discriminant Functions

S, vs §; decisions for every possible pair of classes (one for every pair of classes).

This classifier is known as a one-vs.-one classifier.

Each point is classified according to a majority vote amongst the discriminant functions.

Fig. 4.1 (C.B.) This classifier also leaves some unclassified regions.
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Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows
wy /not w; dichotomies while the bottom figure shows w; /w; dichotomies. The pink
regions have ambiguous category assigments.



KHU-BME
Pattern Classification
Lecture 03

Method III: Try K Discriminant Functions, gi(x)
Consider a single K-class discriminant function (i.e., K linear functions).

Decision rule:
xeS§, iff g, (x)>g;(x), Vj#k

Decision hyperplanes:

g, (x)=g,;(x)

(a) (a)

T T
wex =wx

T TN _(a)
(w, —w;)x" =0

Definition
If g,(y")>g, (0" )Vm=12,.,M;j#k

Then the classes are linearly separable

This classifier is known as a linear machine.

Figure 4.3 lllustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xa
and xg both lie inside the same decision re-
gion Ry, then any point x that lies on the line
connecting these two points must also lie in
R, and hence the decision region must be
singly connected and convex.

Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem.
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Example: Minimum Distance to Class Means Classifier (Linear)

Al M *
ForSu: (v, )= 2.7,
k m=1

Rule: Assign unknown x to same class at closest <y,> using Euclidean metric.

Distance d:

2

N
d2[3_C,<Zk >] = Z['xn_ < ynk >]
n=1

T 1 T T
g(x)=x <Y >_5<Xk> <Y, CTW X+ Wy

Decision surface are perpendicular bisecting hyperplanes of lines joining class means.

S,-S4 boundary is redundant.
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Example: Minimum Distance to Class Member Classifier

D(x, $) = min {d(x, ¥y

,,,,,

Decision Rule:

xe§; if D.S)=min D(x,S,)

Assign x to the same class as the nearest prototype.

All points on the decision surface are equidistant from the closest 2 prototypes from

different classes.
(Nonlinear) Discriminant Function:
1
g (@)= max {x'y -~y 1y}

,,,,, Cotw e

Generalized Linear Discriminant Functions (DHS. 5.3)

Quadratic Discriminant Function

g, (x)= Z[w(k)x2+w X, +z ZW(k)xx +W](\;:)_1

n=l j=n+l

T T
g (X)=x A, x+x b, +wy)

Weights in symmetric matrix Ay
Vector by
No. of terms — N square terms
N linear
N(N-1)/2 cross product terms

1 constant term
Let’generalize
Nonlinear, but can be cast in the form of a linear classifier
i 2 2
Let f=[ x; ,...,xN,x,,...,xN,xlxz,x1x3,...,xN_1xN]T = [fl,....,fN,fNH,...,fZN,f2N+1,...,fT]T
where T=N(N+3)/2

(k k k k k
g (x)= W1 )f1+W2)f2+ +W()fT+W;+)1_W 'f+W;+)1
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It is also called as the @ Machine (Nilsson)

Figure 5.5: The mapping y = (1., x?)! takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional & space.
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Higher Order Polynomial Discriminant Functions

Can be extended to any r-th order polynomial discriminant function.
Let @(x) =w, f,(x)+ w, [,(X)+...+ wy, [y, (X) + Wy,

where f,(x) are linearly independent, real, single-valued functions independent of the

weights.

Example:

1) f.(x)=x, ->linear case

i) f(x)=x}x" Jjl=l,..,N n,mef[0,1] -> quadratic

i) f,(x)=x], x5 s X)) > r-th order polymomial
[ =1,.,N
n; €[0,1]

We can use the @ machine to map the r-th order polynomial nonlinear discriminant

function classifier into a linear classifier that operates in a higher dimensional space.

Nonlinear Discriminant Functions

Piecewise Linear Discriminant Function

Any set of prototypes can be separated by a piecewise linear discriminant function.

However, we do not know how to solve for the weights yet.

It’s coming soon! The techniques are known as linear training algorithms. ©



