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FIGURE 5. (A) Backprojection recon-
struction for simple phantom containing 3
objects with different attenuation values.
(B) For each view, attenuation values are
simply divided evenly along their ray
paths. Summing backprojected views
from several angles builds image. (C) Four
views of phantom are summed. Although
this method is efficient, images recon-
structed with backprojection exhibit con-
siderable blurriness.



Back Projection
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Figure 5.3. Simple back-projection. A dense square in the X
plane 15 projected onto the X and the ¥ axes (two independent
projections). When the wvertical projecrions are back-projected
onto the XY planc, a cross-patcern 15 obrained. The intersecnon
of the rwo back-projections corresponds o the onginal high den-
sity square.
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Figure 5.2, Simple back-projection. A, The ray-sum or total x-
ray amentuation resulting from a single dense object is back-pro-
jected so thar is is distribured homogeneously throughout the core
of ussue in which the measurement of the ray-sum was made. The
well-locahized object 15 thus smeared out within the core. B, As
different projections are performed, the dense object is identified
within differently oriented nssue cores. €, The individual back-
projecrions are summated. The resulong spoke pattern represents
blurring of the object in space by the back-projecrion rechnique.
Because of the basic assumption used in che back-projection
method (the dense object is equally likely 1o be anywhere wichin
a core of rissue), the final distribution may be thought of as a
probability distribution for the likelihood of the object being at
any posinon within the field.



Computed Tomography:
Reconstruction
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Figure 5.7: {a-b) Image and surfiice plot of a distribution gz, y) containing one single dot. The ar-
s .n;_r.l.".!r."."ﬂfr'Illr.'.l.'.'i" u."n'-.l."."i".'u'!",l ]r.l.l'.'.l__,i:-r'.’.".'.l_r.l directions. fi ) 360 -.\i.n;ru.ll.",l.l'."g m obtained f.l..'.,' ]r,l.".'.:.ir."f.n;ul.'_,l lry).
The arvows indicate the views that .".'.l.l'."r.'-ilr,a'.l,r.lrf to the Ifr.l.'.'." ]r.l.-'.'.:,l'r.--f,".-.:.r,l directions in ), |'f-'!r_-| Back-
prvjection (see section 77 r.:f the four views chosen in (a). ,"r—.IIrJ.' S.‘.‘r:,"ru'r Jr,-.".'.ur i image of the
straight forward back-projection of the entire stnogram. in {c).



FIGURE 6. FBP. Mathematic phantom image reconstructed
without {A) and with (B) filtering. FBP effectively reconstructs
high-quality images. Adapted from S. Napel.



Image Reconstruction:
Filtered Back
Projection



Radon Transformation



Radon Transformation

Radon transform in 2-D.

Named after the Austrian mathematician
Johann Radon

RT is the integral transform consisting of
the integral of a function over straight lines.

The inverse of RT is used to reconstruct
images from medical computed
tomography scans.



Sensars

Paralle-beam Projection
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« A projection of a 2-D

image f(x,y) is a set
of line integrals.

To represent an
Image, RT takes
multiple, parallel-
beam projections of
the image from
different angles by
rotating the source
around the center of
the image.



* Forinstance, the line integral of f(x,y) in
the vertical direction is the projection of
f(x,y) onto the x-axis.
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Math. and Geometry of the
Radon Transform

R, (x")= th (x"cosd — ¥'=ind, x"=ind + ¥cosd) dy’

-l




RT Example




Filtered Back Projection
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Filtered Backprojection

* To remove the blurring, an optimal way is
to apply a high-pass filter to eliminate
these artifacts.

* Thus combine backprojection with high-
pass filtering = filtered backproejction.



Figure 5.11. The difference between simple and filtered back-projecuon is illustrated. lo simple back-projection, the ray-
sum is merely projected back directly onto the ray, diswributing its value equally among all the elements in the ray (middle
illuscration). [n filtered back-projection, the ray-sum is filtered by a function that adds negative and positive components

{far nghtl.
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FINAL BACK PROJECTION

Figure 3.12.  Fileered back-projection. A, The ray-sum or tomal x-rav arcenuation resultng from a single dense object is first iliered by
a function with negative and positive components. The filtered ray-sum is then back-projected. The filtered back-projection has boch
pasirive (in hlue) and negative (in red) companenis. The more peripheral components are smaller in amplitude. These components accur
outside the domain of the original ray. B, Each different projection is sequentially filtered and back-projeceed. This resules in a criss-cross
pattern of aliernaring positive and negative componenes or stripes. €. When summartion is performed, the effect of the alternating positive
and megarive components is to cancel our or dampen the spoke parrern associared with simple back-projecrion, resulting in a berer
definirion and localizanion of the dense object.



Compare to this unfiltered

Projections of point object Back-projection onto
from three directions reconstruction plane

For example. after only three projections. the lines would intersect to yield a
“star-pattern’”......



Back-projecting the Filtered
Projection,

If we now perform the same operation that we performed earlier with the
unfiltered projection. we see that the positive parts of the uma ge re-enforce
each other. as do the negative components. but that the positive and negative
components tend to cancel each other out.



Result is Modified
(filtered) projection

FT IFT
)  x|p| =)
Onginal projection Multiply Fourier \
of point Transform by |p]

Compute Fourer Compute inverse
Transform of projection Founer Transform

OR convolve with
IFT of above

Hence we can take the projection of the cross-section. shown here as a single
point. and either perform the processing in the Fourier domain through
multiplication with |p|. or on the spatial domain by convolving the projection
with the IFT of |p|. This turns the projection into a “filtered” projection. with
negative side-lobes. It 1s in fact a spatial-frequency-enhanced version of the
original projection. with the high-frequency boost being exactly equal to the
high-frequency attenuation that 1s applied during the process of back-
projection.



Reconstruction Example

unfiltered filtered




Result is Modified
(filtered) projection

FT IFT
)  x|p| =)
Onginal projection Multiply Fourier \
of point Transform by |p]

Compute Fourer Compute inverse
Transform of projection Founer Transform

OR convolve with
IFT of above

Hence we can take the projection of the cross-section. shown here as a single
point. and either perform the processing in the Fourier domain through
multiplication with |p|. or on the spatial domain by convolving the projection
with the IFT of |p|. This turns the projection into a “filtered” projection. with
negative side-lobes. It 1s in fact a spatial-frequency-enhanced version of the
original projection. with the high-frequency boost being exactly equal to the
high-frequency attenuation that 1s applied during the process of back-
projection.



1D Fourier Transformation

Review
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Squore wave
with repetition rate f
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Figure 5.9. Fourier analysis. A square wave partern illustrares the basic principles of
Fourier analysis. By combining sinusoidal waves of the appropriate frequencies and am-
plitudes, a square wave can be approximated. As more higher frequency components are
included, the approximation improves. Any periodically recurring function, or even one
that is not periodic or even recurrent, can be synthesized from the appropriate combination
of sine waves.



1D Fourier Transform

f(t) F(o)




Filtering

Back to Convolution Properties

yO)=ht)*x(t) = Y(jo)=H(jo)X(jo)
y[n]=h[n]*x[n] < Y () = H(e) X (™)
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FIGURE 4.1-1
Deterministic signal processing
spectrum

(a) Analysis of raw data and spectrum (&) Processed data and
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Ideal Filters (1)

HGV) H e/
1
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(c)

Frequency response of ideal continuous- (left panel) and discrete-time
(right panel) filters. (a) Low-pass characteristic. (b) High-pass
characteristic. (¢) Band-pass characteristic.

Note the difference between H(jw) and H(jQ) 20



Ideal Filters (2)

Low-pass filter: filter out high-frequency components of the input.
Passes lower frequency components

High-pass filter: filter out low frequency parts. Passes high frequency
parts

Band-pass filter: passes signals within a certain frequency band

Pass band=the band of frequencies that are passed by the system
Stop band=the range of frequencies that are attenuated by the system

Decibel (dB)=a common unit for the magnitude response of a filter.
dB=20log|H(jo)|

-3dB corresponds to 1/sqrt(2) of a magnitude response

-3dB corresponds to frequencies of which the filter only passes half of
the input power.

31



2D Fourier Transformation



2D Fourier Transform
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2-D Fourier Basis
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2-D FT & Filtering Example




Fourier Slice Theorem



Fourier Slice Theorem

* FT of the projection of a 2-D object is
equal to a slice through the origin of 2-D
FT of the object.

£ a1 ':"tj t :::'.:_




Collection of projections of an
object at a number of angles

 |n Fourier domain




Central Slice Theorem

L o
Projection at angle () 1D FT of Projection at angle ()

The 1-D projection of the object. measured at angle ¢. is the same as the
profile through the 2D FT of the object. at the same angle. Note that the

projection is actually proportional to exp (-/u(x)xdx) rather than the true
projection Ju(x)xdx. but the latter value can be obtained by taking the log of

the measurad value.



Honzontal Projection
2-D Inverse FT

1-D Founer Transform

Vertical Projection Interpolate in Foyner
Transform

1-D Founer Transform

2-D Founer Transform

If all of the projections of the object are transformed like this. and interpolated
into a 2-D Fourier plane. we can reconstruct the full 2-D FT of the object. The
object is then reconstructed using a 2-D inverse Fourier Transform.



Founier Slice Theorem

Space Domain Fourier Domain

F(P(d, o))

Projection under angle & equals slice under & in founer domain



Tomographic Image Reconstruction

Tomographic Image Reconstruction relies on the Projection
Slice Theorem which states that the Fourier transform of 1mage
projections at a series of look angles 1s equivalent to the Fourier

transform of the 1mage

Filgxy)s
p(r.0) 1
= F{p(r.0)} ==~




Filtered Back Projection:
Fourier Reconstruction



Filtered Projection

 Fourier Slice Theorem

» filtered back projection takes the Fourier
Slice and applies a weighting
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Figure 5.10. Fourier reconstruction. Projections of a rectangular object (A1 are broken up meo sinusoidal waves, whose
amplitudes (Fourier coefficients) are plotied along appropriate lines in che frequency plane (B Dashed lines suggest the

:umﬂce of other transformed projections. A rectangular array of Fourier coefficients is then obtained throughfinter

polation) C ). Finally, the image is reconstructed by adding rogerher sinusoidal waves (D) with amplicudes given by che

ourier coefficients. Thus, B and € show the amphtudes of simusoadal waves of vanous frequencies, which when combined
produce the sparial functions A and D). (Reproduced with permission from: Brooks. R. A., and Di Chiro, G. Theory of
image reconstruction in computed wmography, Radiology 117:361-572, 1973
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Digital Filters
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ve Ram-Lak filter
Shepp-Logan filter
Hamming windowed filter

(a)

Figure 3-4 (a) Examples of the band-limited filter function of sampled data. Note the cyclic

repettiveness of the digital filter.

Ram-Lak
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Figure 3-4 (b) Spatial domain filter kernals correspond-
ing to the filter functions shown in the Ram-Lak filter is a
high-pass filter with a sharp response but results in some
noise enhancement, while the Shepp-lLogan and the
Hamming window filters aro noico cmoothed filtere and
therefore have better SNR.






Filtered Backprojection Algorithm

1. In Matlab, implemented as iradon.m
2. 1-D FFT

3. Digital Filters

4. Interpolation Functions

5. 2-D Inverse FFT



Approaches to Backprojection

» [ Backoroiect — Unblurr with | | |
ackprojec a 2-D Filter mage
Projections
. | Unblurr with Backproiect |
19-D Filter — | Backproject —— mage




