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3.5 The Hodgkin-Huxley Equations for the Nerve 
Action Potential 

The basic mechanism for control of cell volume that we have outlined in this 
chapter operates in all animal cells. But some of these cells, most notably 
neurons, have developed the ability to make brief changes in the mem
brane potential by adjusting the conductances 9K and 9Na· The resulting 
changes in membrane potential typically take the form of a stereotyped, 
pulse-shaped waveform, which is known as the "action potential." The level 
of activity of a neuron is measured in terms of the number of action poten
tials that it generates per unit time. The electrical activity of neurons is 
responsible for sensation, action, and thought, so it is no exaggeration to say 
that we are here concerned with a fundamental and important physiological 
mechanism. 

Changes in the membrane conductances 9K and 9Na lead to departures 
from the steady state, so that INa, IK and lei are no longer equal to zero. 
Because the changes in question are rapid, taking place on a time scale 
of milliseconds, the capacitance of the cell membrane cannot be neglected, 
as it was when we were considering the slower changes associated with cell 
volume regulation. Under these circumstances of rapid conductance change, 
the fundamental equation governing the potential difference v across the 
cell membrane can be derived as follows. First, differentiate equation (3.4.4) 
with respect to time to obtain 

(3.5.1) 

Note that (Vq[Na+]i) is the amount of charge inside the cell that is con
tributed by the Na+ ions. Therefore, the rate of change of this quantity 
is -INa (since our sign convention is that outward currents are consid
ered positive). Similarly, the rate of change of (Vq[K+]i) is -JK, and the 
rate of change of (V( -q)[Cqi) is -lei· Therefore, taking into account the 
formulae for INa, h, and lei (equations 3.4.1-3.4.3), we have 

(3.5.2) 

where 
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(3.5.3) 

kT ( [K+]o) 
-qlog [K+]i ' (3.5.4) 

kT log ([cno). 
-q [cni 

(3.5.5) 
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Note that the pump currents have canceled out. This is because we have 
made the simplifying assumption of a 1:1 Na+ -K+ exchange. With other 
ratios, the pump will make a contribution to equation (3.5.1). 

Now we come to an important simplifying assumption: that the cell is so 
large, and the fluxes of ions are so small, that the internal concentrations 
of the various ions change only slightly during an action potential. This 
is a point that is often missed by the student, who imagines large swings 
of ion concentrations occurring during an action potential. In fact, the 
changes in concentration are so small that even a cell in which the Na+
K+ exchange pump mechanism has been poisoned can generate hundreds of 
action potentials before the concentrations "run down." Mathematically, we 
express this by treating the quantities ENa, EK, and Eel as given constants. 
Their values will be specified later. For now, we just note the qualitative 
relationship 

(3.5.6) 

For purposes of discussion, it is helpful to rewrite equation (3.5.2) in the 
following form: 

Cv + g( v - E) = 0, 

where 

g = gNa + gK +gel 

is the total membrane conductance, and where 

E = gNaENa + gK EK + ge1Ee1 
gNa + gK +gel 

(3.5.7) 

(3.5.8) 

(3.5.9) 

is a weighted average of the equilibrium potentials ENa, EK, and Eel> the 
weight being given in each case by the corresponding conductance. Given 
these definitions of g and E, it is easy to check that equations (3.5.7) and 
(3.5.2) are equivalent. 

According to equation (3.5.7), the membrane potential v is always ap
proaching the instantaneous value of E. Whenever v < E, we have iJ > 0; 
and when v > E, we have iJ < 0. It is therefore significant that the cell 
can adjust E simply by changing the membrane conductances. In the cell 
at rest, v and E are both close to Eel· Early in an action potential, Na + 
channels open (how this happens will be discussed below), dramatically 
increasing gNa· This makes E become close to ENa, and v follows, actually 
reversing sign in the process. Later on in the action potential, the Na+ 
channels close and K+ channels open. This brings E close to EK, and the 
membrane potential v again follows E, thus becoming more negative than 
the resting potential of the cell. Finally, all of the conductances come back 
to normal, and E and v return to their resting values, close to Ee1• 

We now turn to the important question of how the Na+ and K+ con
ductances actually change. This was discovered by Hodgkin and Huxley, 
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through experiments on the squid giant axon. (The axon is a fiber that 
projects out from the cell body of a neuron and carries the signals generated 
by that neuron to other, possibly distant, locations.) These experimenters 
employed a "voltage clamp," which is an electronic circuit that uses feed
back to force the membrane potential to follow a command signal specified 
by the experimenter. The current that is needed to keep the voltage track
ing the command signal is recorded. Hodgkin and Huxley used command 
signals in the form of voltage steps, so that in between jumps, the voltage 
would be constant. The significance of this is that when v is constant, 
Cv = 0. Thus, except during the jumps in voltage, all of the current 
generated by the voltage clamp circuit would actually flow through the 
membrane channels; none of it would be involved in charging or discharg
ing the membrane itself. A constant voltage is also useful for another reason. 
As we shall sec, the properties of the membrane channels turn out to be 
voltage dependent. These properties are therefore easiest to investigate un
der constant voltage conditions. It was part of the genius of Hodgkin and 
Huxley to realize that voltage was the right variable to control. 

Another experimental simplification made by Hodgkin and Huxley was 
to thread a silver wire down the length of the nerve axon that they were 
investigating. (Only in a giant axon would this be possible!) Since silver 
is an excellent conductor of electricity, this has the effect of eliminating 
any voltage differences that might otherwise develop between one location 
and another along the length of the axon. Mathematically speaking, this 
"space clamp" has the effect of ensuring that the membrane potential v 
is a function only of the time t, and not also of the position x along the 
axon. A major triumph of the theory introduced by Hodgkin and Huxley is 
that it was able to predict the behavior of the nerve action potential in an 
axon without a space clamp, despite the fact that the theory was derived 
from experiments performed with the space clamp in place. Specifically, 
Hodgkin and Huxley were able to predict the speed with which the action 
potential propagates along the (non-space-clamped) axon. Propagation, of 
course, cannot even be discussed without introducing the spatial variable 
x. Here, however, we shall restrict consideration to the space-clamped case. 
For this reason, the version of the Hodgkin-Huxley equations that we con
sider will be a system of ordinary differential equations, with time as the 
sole independent variable. This version is adequate for modeling essen
tially all phenomena associated with the nerve action potential except for 
the propagation of the action potential as a traveling wave. For that, the 
Hodgkin-Huxley partial differential equations are needed, and these are 
beyond the scope of this book. 

Having ensured by means of voltage clamp and space clamp that all of 
the measured current would flow through membrane channels, Hodgkin 
and Huxley then went a step further and used pharmacological interven
tion to block one channel type or another, and thereby obtain separately 
the different ionic currents. By studying how these currents varied over 
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time in response to various voltage steps, they arrived at a mathematical 
description of the individual currents. We shall present this description in a 
deductive manner, as though it were derived from first principles, which we 
shall state. But of course, there was no way to know what those principles 
would turn out to be until the measurements had been made, and even 
now, no one is sure what is happening in detail within the channels that 
control the different ionic currents. Thus, the reader should take the fol
lowing description with a grain of salt. It is a theory of membrane channels 
that is consistent with measurements made on the squid giant axon, but 
its details are not to be taken too seriously or applied too universally, since 
there are many different types of membrane channels in different types of 
neurons with quite different properties, and since even in the case of the 
squid giant axon, there may be many different models of the membrane 
channels that would be consistent with the experimental data. 

The great achievement of Hodgkin and Huxley was to characterize the 
behavior of the Na+ and K+ channels of the squid giant axon. We shall 
begin with the K+ channel, which is simpler. Its behavior can be derived 
from the following postulates: 

1. Each K+ channel has four gates. Each gate can be OPEN or 
CLOSED. The K+ channel as a whole is OPEN if and only if all 
four of its gates are OPEN. 

2. All four gates within a K+ channel are identical. (And since we as
sume that there is only one type of K+ channel, all of the different 
K+ channels are identical, too.) 

3. The different gates within a K+ channel operate independently of one 
another. (And of course, the different gates in different K+ channels 
also operate independently of one another.) 

4. The rate constant (probability per unit time) for opening or closing a 
gate of a K+ channel is a specified function of voltage for the opening 
rate and another specified function of voltage for the closing rate. 

Note that the term "OPEN" in the foregoing refers to the conducting 
state of a gate or a channel. This is opposite to the standard electrical 
terminology (which comes from switches that use air as an insulator), but 
when talking about channels and gates it seems irresistible to say that they 
are "OPEN" when they allow ionic current to flow. 

Let us now reduce the foregoing postulates to a mathematical theory. 
Consider the whole population (which we assume is large) of K+ channels, 
and the population of gates within those channels, which we shall call K+ 
gates. Let n(t) be the fraction of K+ gates that are in the OPEN state at 
timet. Alternatively, one can say that n(t) is the probability that a given 
K+ gate is OPEN at time t. Then the dynamics of n(t) are governed by 
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the following equation: 

dn 
dt = O:n(v)(1- n)- f3n(v)n. (3.5.10) 

Here O:n ( v) is the opening rate constant for the K+ gates, which is a function 
of voltage. Similarly, /3n ( v) is the closing rate constant for the K+ gates, 
which is also a function of voltage. These functions will be specified later. 
For now we just mention that O:n ( v) is an increasing function and that 
f3n ( v) is a decreasing function. Thus, increasing the membrane potential 
(inside relative to outside) encourages K+ gates to open and discourages 
them from closing, thus increasing the K+ conductance. (We are speaking 
here of an algebraic increase, i.e., a change that makes the inside potential 
less negative or more positive relative to the outside potential. Since the 
rest potential is negative, an increase in the membrane potential starting 
from rest is, in fact, a decrea..<>e in the magnitude of the potential, and for 
this reason such an increase is often called "depolarization.") 

At any particular v, o:n(v) and f3n(v) are just numbers, with units of 
reciprocal time, i.e., rate. The opening rate constant O:n ( v) is multiplied 
by (1- n) in equation (3.5.10) because (1- n) is the fraction of CLOSED 
K+ gates, and a gate has to be CLOSED in order to open. For example, if 
n = 1 at some instant, then all of the gates are already OPEN, so the rate 
of opening has to be zero at that particular instant. Similarly, the closing 
rate constant f3n(v) is multiplied by n in equation (3.5.10) because n is the 
fraction of OPEN K+ gates, and a gate has to be OPEN in order to close. 

To complete the theory of the K+ channel, we need to specify the K+ 
conductance, gK, in terms of the fraction n of open K+ gates. This is 
where the assumed independence of the K+ gates comes into the picture. 
Since there are four independent gates in each channel, and since n is the 
probability that each of them is OPEN, then the probability that all four 
are OPEN (and hence that the channel is OPEN) is equal to n4. Thus gK 
should be proportional to n4. Hodgkin and Huxley used the notation tiK 
for the constant of proportionality. Thus 

(3.5.11) 

Note that tiK is the K+ conductance in the hypothetical situation of all K+ 
gates in all K+ channels being open. The value of the constant tiK will be 
specified later. 

We now turn to the Hodgkin~Huxley theory of the Na+ channel. The 
behavior of the Na+ channel is qualitatively different from that of the 
K+ channel in the following respect. When an upward step of voltage is 
applied, the K+ conductance rises monotonically and settles down to a 
new, elevated, level that is maintained as long as the elevated voltage is 
maintained. In response to the same kind of voltage step, however, the 
Na+ conductance rises only briefly, and then falls back to a low level, even 
when the elevated voltage level is maintained. This phenomenon is known 



3.5. The Hodgkin-Huxley Equations for the Nerve Action Potential 129 

as Na+ inactivation. To describe it, Hodgkin and Huxley had to assume 
that there are two types of gates within each Na+ channel: fast "m-gates" 
that are encouraged to open by increasing membrane potential, and slower 
"h-gates" that have the opposite response to membrane potential. Thus, in 
the voltage step described above, the transient increase in Na+ conductance 
happens when the m-gates have opened but the h-gates have not yet closed. 
Inactivation is a consequence of the eventual closure of the slower h-gates. 

More precisely, the Hodgkin-Huxley theory of the Na+ channel can be 
derived from the following postulates: 

1. Each Na+ channel has four gates. Each gate can be OPEN or 
CLOSED. The Na+ channel as a whole is OPEN if and only if all 
four of its gates are OPEN. 

2. The four gates, however, are not identical. Three of them are of a type 
that we shall call an "m-gate," and one is of a type that we shall call 
an "h-gate." All m-gates are identical to one another (whether they 
live within the same Na+ channel or not), and all h-gates are iden
tical to one another, but the m-gates and the h-gates have different 
properties. 

3. The different gates within aNa+ channel operate independently of 
one another, regardless of their type. (And of course, the different 
gates in different Na+ channels also operate independently of one 
another.) 

4. The rate constant (probability per unit time) for opening or closing a 
gate of a N a+ channel is a specified function of voltage for the opening 
rate and another specified function of voltage for the closing rate. The 
opening and closing rates of the m-gates are different from those of 
the h-gates. In fact, they are qualitatively different: The m-gates are 
encouraged to open by increasing voltage, whereas the h-gates are 
encouraged to close by increasing voltage. 

As we did in the case of the K+ channel, we now translate these postulates 
into a mathematical theory. Consider a large population of Na+ channels. 
Let m(t) be the fraction of open m-gates at time t, and let h(t) be the 
fraction of open h-gates at that time. Then m(t) and h(t) satisfy differential 
equations of the same form as equation (3.5.10): 

rh 

h 
am(v)(l- m)- f3m(v)m, 

ah(v)(l- h)- f3h(v)h. 

(3.5.12) 

(3.5.13) 

The functions o:m(v), f3m(v), o:h(v), and f3h(v) that give the opening and 
closing rate constants for the m-gates and the h-gates will be specified 
later. For now, we note that am(v) and f3b(v) are increasing functions of 
v, whereas f3m(v) and ah(v) are decreasing functions of v. Thus, increasing 
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voltage encourages opening and discourages closure of the m-gates, but has 
just the opposite effect on the h-gates. 

Another qualitative point worth making about the different gates that 
we have considered is that the m-gates respond to voltage changes about 
10 x faster than the h-gates. The gates of the K+ channel (which we may 
now call "n-gates") are comparable in speed to the slower gates of the N a+ 
channel, i.e., to the h-gates. 

To complete the theory of the Na+ channel, we have to specify the Na+ 
conductance, gNa. as a function of m and h, which are the fractions of 
open m-gates and h-gates, respectively. Here again we are helped by the 
probability interpretation of m and h and by the assumption that the 
different gates of the Na+ channel operate independently. Since there are 
three m-gates and one h-gate in each channel, with probability m that any 
particular m-gate is OPEN and probability h that any particular h-gate is 
OPEN, and since the gates open and close independently, the probability 
that all four gates are OPEN, and hence that the channel as a whole i~; 

OPEN, is equal to m 3 h. The Na+ conductance is proportional to this, and 
hence is given by 

(3.5.14) 

where the constant liN a is the hypothetical Na + conductance when all of 
the gates in all of the Na+ channels are simultaneously open. The value of 
BNa will be specified later. 

In addition to the Na+ and K+ channels, Hodgkin and Huxley also found 
a third type of channel in the membrane of the squid giant axon. They called 
this a "leakage" channel. Unlike the Na+ and K+ channels, the leakage 
channel population has a constant conductance 

gL = BL· (3.5.15) 

The leakage channel corresponds roughly to the Cl- channel that was 
considered earlier in this chapter, but it is not specific to Cl- ions. When 
a channel allows more than one ion type to flow through it, the current
voltage relation of that channel may still be of the form I= g(v- E), but 
there is no longer a simple formula for E in terms of the ion concentrations 
on the two sides of the membrane. Under these circumstances, E is called 
the "reversal potential," a more general term that includes "equilibrium 
potential" as a special case. This change in terminology conveys an impor
tant physical distinction. In a channel that is specific for a single ion, when 
the voltage across the membrane is equal to the equilibrium potential, the 
situation is one of true thermodynamic equilibrium. No heat is being gen
erated, for example, and the ion concentrations are not running down. In a 
channel that admits more than one species of ion, though, even when the 
voltage is at the reversal potential and there is no net current, there are 
nevertheless opposing currents of the different ions that do generate heat 
and that will eventually tend to equalize the concentrations on the two sides 
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of the membrane. This is not a case of thermodynamic equilibrium; hence 
the change in terminology. The reversal potential of the leakage channel, 
which we shall call EL, turns out to be somewhat less negative than the 
resting potential of the squid giant axon. This would not be possible for a 
pure Cl- channel. Since Cl- is not pumped, its equilibrium potential has 
to coincide with the rest potential. In the equations that follow, the leak
age channel, denoted by the subscript L, will replace the chloride channel 
considered earlier. 

We may now summarize the Hodgkin-Huxley equations for the nerve ac
tion potential in the space-clamped case (no propagation). Those equations 
are as follows: 

dv 
C dt + g(v- E)= io(t), (3.5.16) 

where i 0 (t) is an applied current (per unit area of membrane) as a func
tion of time. It may represent current applied through an electrode by an 
investigator, or synaptic current flowing naturally into a neuron because 
channels have been opened by a neurotransmitter. In either case, we regard 
i 0 (t) as a known function of time. 

Recall that 

9 = 9Na + 9K + 9L 

is the total membrane conductance (per unit area), and that 

E = 9NaENa + 9KEK + 9LEL 

9Na + 9K + 9L 

(3.5.17) 

(3.5.18) 

is the weighted average of the reversal potentials weighted by the conduc
tances. The reversal potentials EN a, EK, and EL are constants. Their values 
will be given below. The conductances 9Na, 9K, and 9L are given by 

9Na 

9K 

9L 

9Nam3h, 

9Kn4, 

9L, 

(3.5.19) 

(3.5.20) 

(3.5.21) 

where 9Na, 9K, and 9L are constants whose values will be given below. 
The gating variables m, h, and n obey the following differential equations 

(all of the same form): 

rh 

h 
CYm(v)(1- m)- f'm(v)m, 

ah(v)(1- h)- fJh(v)h, 
an(v)(l- n)- f'n(v)n. 

(3.5.22) 

(3.5.23) 

(3.5.24) 

The six functions of v that appear as coefficients in these equations rep
resent the opening and closing rate constants for the different types of gates 
described earlier. These rates were measured by Hodgkin and Huxley, who 
then fit formulae to the data they obtained. This curve-fitting technique 
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yields the following expressions for the opening and closing rate constants 
as functions of voltage. These formulae are written in a specific system of 
units in which vis in millivolts (lo-3 volts), and the a and f3 rate constants 
are all in reciprocal milliseconds (l/(10- 3seconds) or 103 /second). 

am(v) 1 0 (v + 45)/10 
· 1- exp ( -(v + 45)/10)' 

(3.5.25) 

/3m ( V) 4.0exp(-(v + 70)/18), (3.5.26) 

ah(v) 0.07exp(-(v + 70)/20), (3.5.27) 

,6h ( v) 1.0 
1 

(3.5.28) 
1 + cxp ( -(v + 40)/10)' 

an(v) 0. 1 (v+60)/10 , 
1- exp ( -(v + 60)/10) 

(3.5.29) 

!3n(v) ( v + 70) 0.125exp -8() . (3.5.30) 

Note that some of the above expressions evaluate to 0/0 at particular values 
of voltage. In those special cases, L'Hospital's rule may be used to find the 
missing value. 

Finally, the constants appearing in the Hodgkin-Huxley equations have 
the following values: 

c microamperes x milliseconds 
1.0 2 ' centimeter 

9Na 120 microamperes/millivolt, 

centimeter2 

36 microamperes/millivolt 

centimeter2 ' 

0 microamperes/millivolt 
.3 2 . 

centimeter 
45 millivolts, 

-82 millivolts, 

-59 millivolts. 

3.6 Computer Simulation of the Nerve Action 
Potential 

(3.5.31) 

(3.5.32) 

(3.5.33) 

(3.5.34) 

(3.5.35) 

(3.5.36) 

(3.5.37) 

In this section we describe a numerical method and Matlab program for 
solving the (space-clamped) Hodgkin-Huxley equations that were intro
duced in the previous section. The numerical method is derived by replacing 
the derivatives that appear in the Hodgkin-Huxley equations by the cor
responding difference quotients. To save writing, we shall exploit the fact 




