Analysis of Hodgkin-Huxley Equations

$$C\dot{v} + g(v - E) = 0$$

$$g = g_{Na} + g_{k} + g_{Cl}$$

$$E = \frac{g_{Na}E_{Na} + g_{K}E_{K} + g_{Cl}E_{Cl}}{g_{Na} + g_{K} + g_{Cl}}$$

g = total membrane conductance

- E = weighted average of the equilibrium potentials
 - Membrane potential v is always approaching the instantaneous value of E
 - When v < E, we have $\dot{v} > 0$. When v > E, we have $\dot{v} < 0$. Therefore the cell can adjust *E* simply by changing the membrane conductance
 - In the cell at rest, v and E are both close to E_{Cl} .
 - Early in an action potential, Na^+ channels open, dramatically increase g_{Na} . This makes E become close to E_{Na} and v follows
 - Later in the action potential, the Na^+ channels close and K^+ channels open. This brings *E* become close to E_K . thus the membrane potential *v* becomes more negative than the resting potential of the cell
 - Finally, all of the conductances come back to normal, and E and v return to their resting values, close to E_{Cl} .

 $g_{\kappa} = \overline{g}_{\kappa} n^{4}$ $\frac{dn}{dt} = \alpha_{n}(v)(1-n) - \beta_{n}(v)n$

These equations are based on the following postulates

- 1. Each K^+ channel has four gates. Each gate can be open or closed. The K^+ channel as a whole is open if an only if all four of its gates are open.
- 2. All four gates within a K^+ channel are identical
- 3. The different gates within a K^+ channel operate independently of one another
- 4. The rate constant (probability per unit time) for opening or closing a gate of a K^+ channel is a specified function of voltage for the opening rate and another specified function of voltage for the closing rate.
- To specify the conductance g_K , consider there are four independent gates in each channel and since *n* is the probability that each of them is open, then the probability that all four are open is equal to n^4
- Let n(t) be the fraction of K^+ gates that are in the open state at time t
- $\alpha_n(v)$ is the opening rate constant for the K^+ gates which is a function of voltage.

Also it is an increasing function

- $\beta_n(v)$ is the closing rate constant for the K^+ gates which is a function of voltage.

It's a decreasing function

- Increasing the membrane potential encourages K^+ gates to open and discourages them from closing, thus increasing the K^+ conductance.
- At any particular v, $\alpha_n(v)$ and $\beta_n(v)$ are just number.
- The opening rate constant $\alpha_n(v)$ is multiplied by (1-n). Because (1-n) is the fraction of closed gates, and a gate has to be closed in order to open.
- If n=1, all of the gates are already open, so the rate of opening has to be zero at that particular instant. Similarly, the closing rate constant $\beta_n(v)$ is multiplied by n in equation because n is the fraction of open K^+ gates, and a gate has to be open in order to close.

 $g_{Na} = \overline{g}_{Na}m^{3}h$ $\dot{m} = \alpha_{m}(v)(1-m) - \beta_{m}(v)m$ $\dot{h} = \alpha_{h}(v)(1-h) - \beta_{h}(v)h$

The postulates

- 1. Each Na^+ channel has four gates. Each gate can be open or closed.
- 2. The four gates are not identical. Three of them are of a type that we shall call an m-gate. One is of a type that we shall call an h-gate.
- 3. The different gates within a Na^+ channel operate independently of one another, regardless of their type.
- 4. The rate constant for opening or closing a gate of a Na^+ channel is a specified function of voltage for the opening rate and another specified function of voltage for the closing gate.
- To specify the Na^+ conductance, g_{Na} as a function of *m* and *h*. Since there are three m-gates and one h-gate in each channel and different channels operate independently, the probability that all four gates are open is equal to m^3h
- Let m(t) be the fraction of open m-gates at time t, and let h(t) be the fraction of open h-gates at that time.
- The functions $\alpha_m(v)$, $\beta_m(v)$, $\alpha_h(v)$, $\beta_h(v)$ give the opening and closing rate constants for the m-gates and the h-gates
- $\alpha_m(v), \beta_h(v)$ are increasing functions
- $\beta_m(v), \alpha_h(v)$ are decreasing functions
- Increasing voltages encourages opening and discourages closures of the m-gates, but has just the opposite effect on the h-gates.
- The m-gates respond to voltage changes about 10x faster than the h-gates
- $g_L = \overline{g}_L$
 - A third type of channel in the membrane. It is called a leakage channel
 - The leakage channel population has a constant conductance.

 $\alpha_n(v), \beta_n(v), \alpha_m(v), \beta_m(v), \alpha_h(v), \beta_h(v)$

 Expression for these rate constants are found by curve fitting of the above equations to the measure data. - Their expressions are given as functions of voltage (3.5.25-3.5.30)

$lpha_{ m m}(v)$	-	$1.0 \frac{(v+45)/10}{1-\exp(-(v+45)/10)},$	(3.5.25)
$eta_{ m m}(v)$	=	$4.0 \exp(-(v+70)/18)$,	(3.5.26)
$\alpha_{ m h}(v)$	=	$0.07 \exp\left(-(v+70)/20\right),$	(3.5.27)
$eta_{ m h}(v)$	-1	$1.0\frac{1}{1+\exp\left(-(v+40)/10\right)},$	(3.5.28)
$lpha_{ t n}(v)$	-	$0.1\frac{(v+60)/10}{1-\exp\left(-(v+60)/10\right)},$	(3.5.29)
$eta_{ m n}(v)$	=	$0.125 \exp\left(-\frac{v+70}{80}\right).$	(3.5.30)

- Constants in the H-H equations (3.5.31-3.5.37)

C		$1.0 \text{ microamperes} \times \text{milliseconds}$	(3.5.31)
	—	$1.0 - centimeter^2$,	(0.0.0.2)
		120 microamperes/millivolt	(3.5.32)
9Na		centimeter ²	
āv	_	36 <u>microamperes/millivolt</u>	(3.5.33)
ЯК		centimeter ²	
ār	=	$0.3 \frac{\text{microamperes/millivolt}}{2},$	(3.5.34)
91		centimeter ²	(2 5 25)
$E_{\rm Na}$	=	45 millivolts,	(3.3.33)
$E_{\rm K}$	=	-82 millivolts,	(3.5.36)
E_{T}	=	-59 millivolts.	(3.5.37)
- 1			