Excitability (Ch. 5 Intro)

History of the Hodgkin-Huxley Equations (Ch. 5.1.1)

Regulation of membrane potential by control of the ionic channels is one of the
most important cellular functions.

Many cells, such as neurons and muscle cells use the membrane potential as a
signal, and thus the operation of the nervous system and muscle contraction are
both dependent on the generation and propagation of electrical signals.

Two types of cells: excitable and nonexcitable cells

Nonexcitable cells are the epithelial cells that line the walls of the gut.
Photoreceptors are also nonexcitable. Membrane potentials are important, but no
action potentials.

Excitable cells include cardiac cells, smooth and skeletal muscle cells, most neurons.
They produce action potentials.

The most important of the past 100 years, Hodgkin and Huxley developed the first
quantitative model of the propagation of an electrical signal, the most important
landmark.

The most important model in all of the physiological literature.

Figure 5.1 The infamous giant squid (or even octopus, if you wish to be pedantic), having
nothing to do with the work of Hodgkin and Huxley on squid giant axon, From Dangerous Sea
Creatures, © 1976, 1977 Time-Life Films, Inc.



The Hodgkin-Huxley Model (5.1)

Starts with
dv
CmE + lign(V,£) =0
v=V;-V,

— In many neural cells, the principle ionic currents are sodium and potassium currents

— The chloride current and other ionic current lumped into the leakage current
dv
dt

lapp: applied current

Cim = —gna(V = Vno) —gx(V = Vi) —g.(V—=V,) +[app

— Rewrite
av
CmE = _geff(V - Veq) + lapp
Geff = 9na T 9k T 91

Veq = (GnaVna + 9kVik + 9LV1)/Gerr membrane resting potential
R,, = 1/g.rr, membrane resistance

- Steady state

1

0= _R_(V_Veq) + lapp
m

| /4 Veq

—=—4+ ]

Rm Rm app

V ="V, + Roplapp

- Key to determine conductance was being able to measure individual ionic

current. From this to deduce the changes in conductance.

- Voltage clamp techniques
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Voltage clamp technique for studying membrane cur-
rents of a squid axon.

The voltage clamp is an experimental method used by electrophysiologists to measure

the ion currents through the membranes of excitable cells, such as neurons, while holding the
membrane voltage at a set level. A basic voltage clamp will iteratively measure the membrane
potential, and then change the membrane potential (voltage) to a desired value by adding the
necessary current. This "clamps" the cell membrane at a desired constant voltage, allowing the
voltage clamp to record what currents are delivered. Because the currents applied to the cell
must be equal to (and opposite in charge to) the current going across the cell membrane at the
set voltage, the recorded currents indicate how the cell reacts to changes in membrane
potential. Cell membranes of excitable cells contain many different kinds of ion channels, some
of which are voltage-gated. The voltage clamp allows the membrane voltage to be manipulated
independently of the ionic currents, allowing the current-voltage relationships of membrane
channels to be studied. - Wikipedia

Voltage Clamp




Voltage and Time Dependence of Conductance (5.1.2)

- Voltage clamp technique enables to investigate the dynamics of the conductance.

- Fig. 5.2: Experimental results of the total membrane currents

- HH used a clever trick to separate the total ionic current into its constituent ionic
parts.

- Tetrodotoxin (TTX): to block sodium currents

- Tetraethylammonium (TEA): to block potassium currents

- Fig. 5.3: Samples of HH's data
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The Potassium Conductance

- Based on Fig. 5.3A and B, assume that g, obeys some differential equation,
dgi
o @D

v =V —V,,=the membrane potential - the resting potential
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Figure 5.3 Conductance changes as a function of time at different voktage clamps. A: The
response of g¢ to a step increase in V and then a step decrease. B: Responses of gg to step
increases in V of varying magnitudes.The number on each curve gives the depolarization inmV,
and the smooth curves are calculated from solution of (5.11) and (5.12), with the initial condition
gk (t = 0) = 0,24 mS/cm?, The vertical scale is the same in curves A=J, but is increased by a
factor of four in the lower two curves. For clarity, the baseline of each curve has been shifted
up. C: Responses of gy, to step increases in V of magnitudes given by the numbers on the
left, in mV.The smooth curves are the model solutions. The vertical scales on the right are in
units of mS/em?, {Hodgkin and Huxley, 1952d, Figs. 2, 3, and 6.)

Assume g, follows the sigmoidal increase and exponential decrease which can be
expressed as some power of a different variable, thus
gk = gen*

where gy is a constant.

The fourth power was chosen not for physiological reasons, but because it was the

smallest exponent that gave acceptable agreement.

Now the secondary variable n now obeys the differential equation
W) T =n.w)—n ()

where 7, (v) and n.,(v) to be determined from the experimental data (by fitting)

Rewrite the equation (*)

dn

= = W@ -1 = f,w)n

where



an(v)

() = ) 4 B
_ 1
w0 = ) A

n(t) is called potassium activation.

As v changes from 0 to v,, solution for (*) becomes

(0 = nu o)1 - exp (——)]

Tn (Vo)
It is an increasing curve to the maximum n.,(v,). n* provides a sigmoidally
increasing curve for g;.
By fitting this equation, obtain t,(v) and n.(v). See Fig. 5.4.

As v changes form v, to 0 (step decrease of v), the solution is

n(t) = e (vo)exp( )

7, (Vo)

now raising to the fourth power gives exponential decrease.
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Figure 5.4 Data points (symbols) of n,,, determined by fitting (5.16) to the experimental time
courses, The smooth curve through the symbols provides a continuous description of ny, and
its functional form has no physiological significance. In the original plot (Hodgkin and Huxley,
1952d, Fig. 5) V was calculated with a reverse sign, which has here been changed to agree with
modern conventions, Thus, the horizontal axis appears reversed.



The Sodium Conductance

- The sodium conductance is in a form of

gNa(v) = m"ﬁh

2 p(1—m)
dt—am m) — Bpm

dh
—2 = an(1—h) = Bph

where m is small at rest and first increases, it is called the sodium activation.

A shuts down or inactivates the sodium current. It is called the sodium inactivation.

- The unknowns a, , B, , a, H p, are determined by fitting to the
experimental activation.

- m=sodium activation

- h=sodium inactivation

- Therefore

dv
CmE = _g_kn4(v - vk) - g_NamSh(v - vNa) - g_L(v - vk) + Iapp

am a )
Fri fo o m) — fpm

dh
—2 = an(1—h) = Bph

dn — )
Fri a, n) — fun

25—v
e (Fpg) 1

-V
fm = 4exp(33)

a, =01

—v
ap = 0.07exp(ﬁ)

1
b= exp (3016 v) +1
10—v

a, =0.01

exp (1016 7)-1

—v
Bn = 0.125exp(%)



Ina = 120
gk = 36
«g_L =0.3

- Now assume the sodium channel has three m gages and one h gate.
- The potassium channel has four n gates.
- Look at Fig. 5.5, 5.6.
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Figure 5.5 In the left panel are the steady-state functions, and in the right panel are the time
constants of the Hodgkin=Huxley equations (5.20)=5.23).
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Figure 5.6 An action potential in the Hodgkin=Huxley equations. A: The action potential;
B: the gating variables during an action potential, and C: the conductances during an action
potential.

How to compute (summary)
1. Get T,(v) and ne(v).
T, (v) and mg(v).

,(v) and h,(v). (see their shapes).

2. Compute n(t), m(t), and h(t) (check out the shapes).
3. Compute gi(t) and gp.(t) (check out the shapes.)
4. Compute V(t), action potential



