Cellular Homeostasis

2.1 The Cell Membrane

The cell membrane provides a boundary separating the internal workings of the cell
from its external environment. More impartantly, it is selectively permeable, permitting
the free passage of some materials and restricting the passage of others, thus regulat-
ing the passage of materials into and out of the cell. It consists of a double laver (a
bilayer) of phospholipid molecules about 7.5 nm (=75 A) thick (Fig- 2.1). The term lipid
is used to specify a category of waterinsolubie, encrgy rich macromolecules, typical
of fats, waxes, and oils. Trregularly dispersed thioughout the phosphalipid bilayer are
aggregates ot globular proteins, which are apparently free to move within the layer,
giving the membrane a fluid-like appearance. The membrane also contains water-filled
pores with diameters of about 0.8 nm, as well as protein-lined pores, called chiannels
which allow passage of specific molecules. Both the intracellular and extracellular en-
vironments consist of, among many other things, a dilute aqueous solution of dissolved
salts, primarily NaCl and KCl, which dissociate info Na™, K*, and C1” ions. The cell
membrane acts as a barrier to the free flow of these ions and maintains concentration
differences of these ions. In addition, the cell membrane acts as a barrier to the flow
of water.

Molecules can be transported across the cell membrane by passive or active pro-
cesses. An active process is one that requires the expenditure of energy, while a passive
process results solely from the inherent, random movement of molecules. There are

three passive transport mechanisms (o transport molecules through the cell membrane

Osmosis is the process by which water is transported through the celi membrane-
Simple diffusion accounts for the passage of small molecules through poresand of lipid-
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Figure 2.1 Schematic dizgram of the cell membrane, (Davis et al., 1985, Fig. 3-1, p. 41}

soluble molecules through the bilipid layer. For example, water, urza (a nitrogenous
waste product of metabolism), and hydrated chloride ions diffuse through membrane
pores. Oxygen and carbon dioxide diffuse through the membrane readily beczuse they
are soluble in lipids. Sodium and potassium ions pass through ion-specific channels,
driven by diffusion and electrical forces. Some other mechanism must account for the
transport of larger sugar molecules such as galactose, glucose, and sucruse, as they are
too large to pass through membrane pores (Fig. 2.2). Carrier-mediated diffusion occurs
when a molecule is bound to a carrier moleculs that moves readily through the mem-
by anse. For example, the transport of glucose and amino acids across the cell membrane
is believed to be by a cartier-mediated process,

Concentration differences are set up and maintained by active mechanismis that
use energy to pump ions against their concentration gradient. One of the most im-
portant of these pumps is the Na*-K* pump, which uses the ¢nergy stored in ATP
molecules to pump Na* out of the cell and K* in. Another pump, the Ca®* ATPase,
pumps Ca®* out of the cell or into the endoplasmic reticulum. There are also a variety
of exchange pumps that use the energy inherent in the concentration gradient of one
ion type to pump another ion type against its concentration gradi=nt. For example,
the Na*-Ca’* exchanger removes Ca’* from the ccll at the expense of Na* entry, and
similarly for the Na*-H* exchanger. Typical values for intraceilular and extracellular
ionic concentrations are given in Table 2.1.

Differences in ionic concentrations create a potential difference across the cell
membrane that drives ionic currents. Water is also absorbed into the cell because of
concentration differences of these fons ard alse because of other large molecules con-
tained in the cell, whose presence provides an osmotic pressure for the absorption

of water. It is the balance of these forces that regulates both the cell volume and
the membrane potential.
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Figere2.2 Schematic diagram of the cell membrane containing a protein carrierand s protein-
lined ionic channel. (Davis et al., 1985, Fig. 3-7, p. 45.)

Table 2.1 Typical vaiues for intracellular and extraceliular ionic concentrations, from three
different cell types. Concentrations are given in units of mM, and potentials are in units of
mV. Extracellular concentrations for the squid giant axon are for seawater, while those for frog
muscle and red blecd cells are for plasma. Laler in this chapter we discuss Nernst potentials
and resting potentials. (Adapted from Mounicastle, 1974, Tabte 1-1.)

Squid Frog Human
Giant  Sartorius Red Blood
Axon Muscle Cell
Intraceliular
concemrations
Na* S0 13 T
K+ 337 138 136
a- 40 3 78
Mg 80 14 6.5
Extracellular
concemrations
Mat 437 110 155
Kt pras} 2. 5
o 556 20 1z
Mg+ 53 1 22
Mernst
potentials
Ve +56 +55 +55
Vi =77 ~101 —B6
. Va —68 —88 -9 ==
Resting S )
potentials —65 —99 —6 10 —10
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26 The Membrane Potential

The principal function of the active transport processes described above is to regu-
late the intracellular ionic composition of the cell. For example, the operation of the
Na*-K*+ pump results in high intracellular K* concentrations and low intracellular
Ma* concentrations. As we will sce, this is necessary for a cells survival, as without
such regulation, cells could not control their volume. However, before we consider
models for cell volume regulation, we consider the effects of ionic separation. It is a

consequence of the control of cell volume by ionic transport that the cell develops a
potential difference across its membrane.

261 The Nernst Equilibrium Potential

One of the most important equations in electrophysiology is the Nernst equation, which
describes how a difference in ionic concentration between twa phases can result in a
potential difference between the phases. We do not derive the Nernst equation from first
principles, but give a nonrigorous derivation in Section 2.6.2. Derivations of the Nernst
equation using the theory of chemical equilibrium thermodynamics can be found in
standard physical chemistry textbooks (for example, Levine, 1978; Denbigh, 1981).

Suppose we have two reservoirs containing the same ion S, but at different con-
centrations, as shown schematicaily in Fig. 2.10. The reservoirs are separated by a
semipermeable membrane. The solutions on each side of the membrane are assumed
to he electrically fieutral (at least initially), and thus each ion § is balanced by another
ion, §', with opposite Sign. For éxample, S could be Na™, while §' could be Cl-;Because
we ultimately wish to apply the Nernst equation to cellular membranes, we call the left
of the membrane the inside and the right the cutside.
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Figqure 2.10 Schematw diagram of a mem-

brane separating two solutions with different
icnic concentrations.

Vi Ve

1f the membrane is permeable to S but not to §', the concentration difference across
the membrane results in a flow of § from one side to another, say, from left (o right.
However, because S’ cannot diffuse through the membrane, the diffusion of 5 causes
a buildup of charge across the membrane. This charge imbalance, in tum, sets vp an
electric field that cpposes the further diffusion of 5 through the membrane. Equilibrium
is reached when the electric field exactly balances the diffusion of S. Note that at steady
state there will be more S ions on one side than on the other, and thus neither side of the
membrane is exactly electrically neutral. However, although the diffusion of £ causes
an electric potential to develop, it is important to realize that only a small amount of
S moves across the membrane. To a good approximation the concentrations of 3 on
either side of the membrane remain unchanged, the solutions on either side ot the
mermbrane remain electrically neutral, and the small excess charge accumulates near
the intertace.

At equilibrium the potential difference, Vs, across the membrane is given by the

Nernst potential,
_RT sLy E {s1 2
Vs = zF In (_[5}) = In (_[51') 5 (2.54)

where subscripts i and e denote internal and external concentrations respectively. R is

‘he universal gas constant, T is the absolute temperature, F is Faraday’s constant, k 15
Boltzmann's constant, g is the charge on a proton, and z is the charge on the jon S.

Values of these constants, and their units, are given in the Appendix. One particularly
important reiationship is

R . g
L ke @59

where N is Avogadro’s number. Because of this, the Naxnst ﬂqualwn_;:a; E:é_u_vritw_n_iﬁ
the two equivalent forms shown above. Throughout this book we follow the standard
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convention and define the potential difference across the cell membrane as

V=V -V, (2.56)

i . the intracellular mimus the extracellular potential. When V = Vs, there is no net

current of $ between the phases, as the diffusion ol § is exactly balanced by the electric
potential difference.

Typical concentrations (in this case, for squid axon) are 397, 50, and 40 mM for

potassium, sodium, and chloride, respectively, in the intracellular space, and 20, 437,

and 556 mM in the extracellular space. With these concentrations, the Nemnst potentials
for squid nerve axon are Vi, = 56 mV, Vi = —77 mV, V¢ = —68 mV (using RT/F = 25.8
mV ut 27°C. See Table 2.11.

The Nernst equation is independent of how the ions move through the membrane
and is dependent enly on the concentrition difference. In this sense, it is a "univer-

sal” law, Any equation that expresses the transmembrane current of S in terms of the

membrane potential, no matier what its form, must have a reverzal potential of Vs;

i.e.. the current must be zero at the Nemnst potential V = Vs. Bowevei, although this
is true when only a single ion species crosses tiie membrane, the situa

tion is consider-
ably more complicate

d when more than one type of ion can cross the membrane. In
this case, the membrane potential that generates zero total current does not necessarily
have no net current for each individual ion. For example, a current of $ in one direction
mignt be balanced by a current of §'in the same direction. Hence, when multiple ion
types can diffuse through the membrane, the phases are not, in general, at equilibrium,
even when there is no total current. Therefore, the arguments of chemical equilibrium
used 1o derive the Nernst equation cannot be used, and there isno universal expression
fou the reversal potential in the multipie ion case. In this case, the reversal potential
depends on the model used to describe the individual transmembrane ionic flows (see
Chapter 3).

262 Electrodiffusion: The Goldman-Hodgkin—Katz Equations

In general, the flow of ions through the membranz is driven by concentration gradients

and also by the electric field. The contribution to the flow from the electric field is given
by Plarick’s equation

y= —uich). (2.57)
Izl

where i is the mobility of the ion, defined as the velocity of the ion under a constant
unit electric field; z is the valence of the ion, so that z/iz] is the sign of the force on
the ion: ¢ is the concentration of §; and ¢ is the clectrical potential, so that — V¢ is the
electrical field.

There is a relationship, determined by Einstein, between the ionic mobility & and
Fick's diffusion constant: -~ - - 5 : PR SSs . S

uRT

T T 2.58)
{zIF :
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When the effects of concentration gradients and elecirical gradients are combined,
we abtain the Nermsr-Planck eguation

-F
J=-D|¥c+ ——eV ). 9
( C+ T @) (259

If the flovr of ions and the electric feld are transverse to the membrane, we can
view (2.59) as the one-dimensional relation

de  zF dp
f=-D (— + ET"CE)' (2.60)
The Nernst equation

The Nemst equation can be derived from the Nernst—Planck electrodiffusion equation
(2.60). When the flux J is zero, we find

dc F de
] SEN =
(dx + RTcdx) 0, (2.61)
so that
Tde  zFd¢ .
cdx ¥ RTdx % 1268

Now suppose that the cell membrane extends trom x = 0 (the inside) 10 x = L {the
outzide), and let subscripts ¢ and e denote internal and external quantities respectively.
Then, integrating from x = 0 tox = L we get

In{c)

o iF
= — . — 2
RT(@ e ). {2:63)

and thus the potential difference across the membrane, V = ¢; — ¢,, is given by

RT i
V=—In{—=]), 64}
F 11(':!_) (2.64}
which is the Nernst equation.

This derivation of the Nernst equation relies on the Nemst—Planck electrodiffusion
equation, and so is not a derivation from first principles. The derivation from first
principles can be given, but it is beyond the scope of this text. The interested reader is
referred to Levine {(1978) or Denbigh (1581) for the details.

The constant field approximation

In general, the electric potential ¢ is determined by the local charge density, and so
J must be found by solving a coupled system of equations (this is discussed in detail
in Chapter 3). However, a useful result is obtained by assuming that the electric field
in the membrane is constant, and thus decoupled from the effects of charges moving

_ through the membrane. Suppose we have two reservoirs separated by a semipermeahle
membrane of thickness L, such that the potential difference across the membrane is
V. On the left of the membrane (the inside) [S] = ;. and on the right (the outside)
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[5] = ¢ If the electric field is constant through the membrane, we have dg/ax =
where V = ¢{0) — ¢{L}) is the membrane potential.
At steady state and with no production of jons, the flux must be constant. In this

case, the Nernst-Planck equation (2.59) is an ordinary differential equation for the
concentration ¢,

‘L.

dc _1FVH+J' i i
& RTL"'n iZe2)

whose solution is

- —zVFx c(x)——JRTL-l—eu —zVFx _1"+ 26{\
P\ RIL = " Deve |SF\RTL J cir i

where we have used the ieft boundary condition cl0) = c;. To satisfy the boundary
condition ¢(L) = ¢.. it must be that

D zFV c; —ceexp (BE

PR Mo 7 €
LRT 1-exp(57) @en

where T is the flux density with units (typically) of moles per area per unit time. This flux
density becomes an electrical current density (current per unit area) when multiplied
by F, the number of charges carried per mole, and thus

gl ==

22FY i —c.explo
lg=Ps——V———FL= PE_;‘,: ), (2.68)

RT = 1-exp(Si7)

where P = DIL is the permeability of the membrane to S. This is the famous Goldman—
Hodgkin-Katz (GHK) curment equaticn. It plays an important role in models of cellular
clectrical activity:

This flow is zero if the diffusively di ven flow and the electrically driven flow are in
balance, which occurs, provided that z £0, it

T
VeVs= S In (3) : (2.69)
I.-“ Ci

which is, as expected, the Nernst potential.

if there are several ions that are separated by the same membrane, then the flow of
each of these is governed separately by its own cun ent—voltage relationship. In general
there is no potential at which these currents are all zero. However, the potential at
which the net electrical current is zero is called the Goldman-Hodgkin-Katz potential.
For a collection of ions all with valence z = +1, we can calculate the GHK potential
directly. For zero net electrical current, it must be that

SeR e o
0=ZP1‘E{ ceexp (F7) i EP,_C{ zexp (&7)
=1

3 (2.70)
1—exp(qp) o 1 -exe(i)
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where #; = 13,/L.. This expression can be solved for V, to get
=Ry ( —M )
F {_—IPfd‘}Lr ].PI'CJ

For example, if the mermbrane separates sodium (Na*,z = 1), potassium (K*,z = 1),
and chloride (Cl ,z = —1} ions, then the GHK potential is

L. i (Pn-[Na*l- + Px[K* ) + PC;ECTL)

(2.71)

272
F "\ PralNa*L + Px[KL + PalCI L L

1t is importani to emphasize that neither the GHK potential nor the GHK current
equation zre universal expressions like the Nernst equation. Both depend on the as-
sumption of a constant electric field, and other models give different expressions for
the transmembrane current and reversal pstential. In Chapter 3 we present a detailed
discussion of other models of ionic current and compare them to the GHK equations.
However, the importance of the GHK equations is 5o great, and their use so widespread,
that their separate presentation here is justified.

263 Electrical Circuit Model of the Cell Membrane

Since the cell membrane separa.tes charpe, it can be viewed as a capacitor The capac-
itance of any insulator is defined as the ratio of the charge across the capacitor to the
voitage potential necessary to hold that charge, and is denoted by

Cop = ? 2.73)

From standard electrostatics (Coulomb’s law), one can dzrive the fact that for twa

parallel conduciing plates separated by an insulator of thickness d, the capacitance is

keg

==, (2.74)

where k is the dielectric constant for the insulator and ¢ is the permittivity of free

space. The capacitance of cell membrane is typically found to be 1.0 yFicm?. Using

that €5 = (10~°/(367))E/m, we calculate that the dielectric constant for cell membrane
is about 8.5, compared to k = 3 for oil.

A simple electrical circuit model of the cell membrane is shown in Fig. 2.11. It is
assumed that the membrane acts like a capacitor in parallel with a resistor {although
not necessarily chmic). Since the current is defined by dQ/dt, it follows from (2.73)
that the capacitive current is CndVidt, provided that Cy. is constant. Since there can

be no net buildup of charge on either side of the membrane, the sum of the ionic and
capacitive currents must be zero, and so

—dV
S 2o g— iy =10 Sfssims 2
T +1; 0 (2.75)
where V = V-V
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Figure 211 Electrical circuit model of the cell membrane.

We will meet this equation many times in this book, as it is the basis for much of
theoretical electrophysiology. A significant challenge is to determine the form of lion-
We have already derived one possible choice, the GHK current equation (2.68), and
others will be discussed in Chapter 3.

Another common model describes fion 3s 2 linear function of the membrane poten-
tic]. In Chapter 3 we will see how alinear _v curve can be derived from more realistic
models: however, because it is used so widely, we present a brief, heuristic, derivation
here. Consider the movement of an ion S across 3 membrane. We assume that the po-
tential drop across the membrane has two components, First, the potential drop due
to concentration differences is given by the Nernst equation

and, second, the potential drop due to an electrical current is ris (if

the channel is
ohmic), whereris

+he channel resistance and /s is the transmembrane current (positive
outward) of . Summing these two contributions we find

V=rs+Vs, (2.77)
and solving for the current, we get the current-voltage relationship

ls=g(V—Vs), _ {2.78)

where g = Uris Lh-t: 'me'mbmme mm.m_mm Is and conduc@nce g ard

usually specified per unit area of membrane, being the product of the single channel
conductance times the number of chanaels per unit area of membrane.



