
Illustration of numerical
integration for the
differential equation

 Blue: the

Euler method, green: the
midpoint method, red: the
exact solution, . The

step size is .

The same illustration for
 The midpoint

method converges faster
than the Euler method, as

.

Numerical methods for ordinary differential equations
Numerical methods for ordinary differential equations are methods used to find numerical
approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical
integration", although this term can also refer to the computation of integrals.

Many differential equations cannot be solved using symbolic computation ("analysis"). For practical purposes,
however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms
studied here can be used to compute such an approximation. An alternative method is to use techniques from
calculus to obtain a series expansion of the solution.

Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and
economics.[1] In addition, some methods in numerical partial differential equations convert the partial
differential equation into an ordinary differential equation, which must then be solved.

The problem

Methods
Euler method

Backward Euler method

First-order exponential integrator method

Generalizations

Advanced features

Alternative methods

Parallel-in-time methods

Analysis
Convergence

Consistency and order

Stability and stiffness

History

Numerical solutions to second-order one-dimensional boundary value problems

See also

Notes

References

External links

A first-order differential equation is an Initial value problem (IVP) of the form,[2]

 (1)

where is a function , and the initial condition is a given vector. First-order means that only the first
derivative of y appears in the equation, and higher derivatives are absent.

Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can
be converted into a larger system of first-order equations by introducing extra variables. For example, the second-order equation y′′ = −y can be
rewritten as two first-order equations: y′ = z and z′ = −y.

In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a
BVP, one defines values, or components of the solution y at more than one point. Because of this, different methods need to be used to solve
BVPs. For example, the shooting method (and its variants) or global methods like finite differences,[3] Galerkin methods,[4] or collocation
methods are appropriate for that class of problems.

The Picard–Lindelöf theorem states that there is a unique solution, provided f is Lipschitz-continuous.

Numerical methods for solving first-order IVPs often fall into one of two large categories:[5] linear multistep methods, or Runge–Kutta
methods. A further division can be realized by dividing methods into those that are explicit and those that are implicit. For example, implicit
linear multistep methods include Adams-Moulton methods, and backward differentiation methods (BDF), whereas implicit Runge–Kutta
methods[6] include diagonally implicit Runge–Kutta (DIRK),[7][8] singly diagonally implicit Runge–Kutta (SDIRK),[9] and Gauss–Radau[10]

Contents

The problem

Methods

https://en.wikipedia.org/wiki/File:Numerical_integration_illustration,_step%3D1.svg
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Midpoint_method
https://en.wikipedia.org/wiki/File:Numerical_integration_illustration_step%3D0.25.svg
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Symbolic_computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Series_expansion
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Numerical_partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Shooting_method
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Galerkin_method
https://en.wikipedia.org/wiki/Collocation_method
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Linear_multistep_method#Adams%E2%80%93Moulton_methods
https://en.wikipedia.org/wiki/Backward_differentiation_formula
https://en.wikipedia.org/wiki/Implicit_Runge%E2%80%93Kutta_methods

(based on Gaussian quadrature[11]) numerical methods. Explicit examples from the linear multistep family include the Adams–Bashforth
methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential
equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit schemes.

The so-called general linear methods (GLMs) are a generalization of the above two large classes of methods.[12]

From any point on a curve, you can find an approximation of a nearby point on the curve by moving a short distance along a line tangent to the
curve.

Starting with the differential equation (1), we replace the derivative y′ by the finite difference approximation

 (2)

which when re-arranged yields the following formula

and using (1) gives:

 (3)

This formula is usually applied in the following way. We choose a step size h, and we construct the sequence
We denote by a numerical estimate of the exact solution . Motivated by (3), we compute these estimates by the following recursive
scheme

 (4)

This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named
after Leonhard Euler who described it in 1768.

The Euler method is an example of an explicit method. This means that the new value yn+1 is defined in terms of things that are already known,
like yn.

If, instead of (2), we use the approximation

 (5)

we get the backward Euler method:

 (6)

The backward Euler method is an implicit method, meaning that we have to solve an equation to find yn+1. One often uses fixed-point iteration
or (some modification of) the Newton–Raphson method to achieve this.

It costs more time to solve this equation than explicit methods; this cost must be taken into consideration when one selects the method to use.
The advantage of implicit methods such as (6) is that they are usually more stable for solving a stiff equation, meaning that a larger step size h
can be used.

Exponential integrators describe a large class of integrators that have recently seen a lot of development.[13] They date back to at least the
1960s.

In place of (1), we assume the differential equation is either of the form

 (7)

or it has been locally linearized about a background state to produce a linear term and a nonlinear term .

Exponential integrators are constructed by multiplying (7) by , and exactly integrating the result over a time interval :

This integral equation is exact, but it doesn't define the integral.

The first-order exponential integrator can be realized by holding constant over the full interval:

 (8)

Euler method

Backward Euler method

First-order exponential integrator method

https://en.wikipedia.org/wiki/Gaussian_quadrature
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Adams%E2%80%93Bashforth_methods
https://en.wikipedia.org/wiki/Butcher_tableau
https://en.wikipedia.org/wiki/Explicit_Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Stiff_equation
https://en.wikipedia.org/wiki/General_linear_methods
https://en.wikipedia.org/wiki/Tangent
https://en.wikipedia.org/wiki/Finite_difference
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Forward_Euler_method
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Explicit_and_implicit_methods
https://en.wikipedia.org/wiki/Fixed-point_iteration
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Stiff_equation

The Euler method is often not accurate enough. In more precise terms, it only has order one (the concept of order is explained below). This
caused mathematicians to look for higher-order methods.

One possibility is to use not only the previously computed value yn to determine yn+1, but to make the solution depend on more past values.
This yields a so-called multistep method. Perhaps the simplest is the leapfrog method which is second order and (roughly speaking) relies on
two time values.

Almost all practical multistep methods fall within the family of linear multistep methods, which have the form

Another possibility is to use more points in the interval . This leads to the family of Runge–Kutta methods, named after Carl Runge
and Martin Kutta. One of their fourth-order methods is especially popular.

A good implementation of one of these methods for solving an ODE entails more than the time-stepping formula.

It is often inefficient to use the same step size all the time, so variable step-size methods have been developed. Usually, the step size is chosen
such that the (local) error per step is below some tolerance level. This means that the methods must also compute an error indicator, an
estimate of the local error.

An extension of this idea is to choose dynamically between different methods of different orders (this is called a variable order method).
Methods based on Richardson extrapolation,[14] such as the Bulirsch–Stoer algorithm,[15][16] are often used to construct various methods of
different orders.

Other desirable features include:

dense output: cheap numerical approximations for the whole integration interval, and not only at the points t0, t1, t2, ...

event location: finding the times where, say, a particular function vanishes. This typically requires the use of a root-finding algorithm.

support for parallel computing.

when used for integrating with respect to time, time reversibility

Many methods do not fall within the framework discussed here. Some classes of alternative methods are:

multiderivative methods, which use not only the function f but also its derivatives. This class includes Hermite–Obreschkoff methods
and Fehlberg methods, as well as methods like the Parker–Sochacki method[17] or Bychkov–Scherbakov method, which compute the
coefficients of the Taylor series of the solution y recursively.

methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ODEs of the form (1). While this
is certainly true, it may not be the best way to proceed. In particular, Nyström methods work directly with second-order equations.

geometric integration methods[18][19] are especially designed for special classes of ODEs (for example, symplectic integrators for the
solution of Hamiltonian equations). They take care that the numerical solution respects the underlying structure or geometry of these
classes.

Quantized state systems methods are a family of ODE integration methods based on the idea of state quantization. They are efficient
when simulating sparse systems with frequent discontinuities.

For applications that require parallel computing on supercomputers, the degree of concurrency offered by a numerical method becomes
relevant. In view of the challenges from exascale computing systems, numerical methods for initial value problems which can provide
concurrency in temporal direction are being studied.[20] Parareal is a relatively well known example of such a parallel-in-time integration
method, but early ideas go back into the 1960s.[21]

Numerical analysis is not only the design of numerical methods, but also their analysis. Three central concepts in this analysis are:

convergence: whether the method approximates the solution,

order: how well it approximates the solution, and

stability: whether errors are damped out.[22]

Generalizations

Advanced features

Alternative methods

Parallel-in-time methods

Analysis

Convergence

https://en.wikipedia.org/wiki/Leapfrog_method
https://en.wikipedia.org/wiki/Linear_multistep_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge
https://en.wikipedia.org/wiki/Martin_Kutta
https://en.wikipedia.org/wiki/Richardson_extrapolation
https://en.wikipedia.org/wiki/Bulirsch%E2%80%93Stoer_algorithm
https://en.wikipedia.org/wiki/Root-finding_algorithm
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta%E2%80%93Fehlberg_method
https://en.wikipedia.org/wiki/Parker%E2%80%93Sochacki_method
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Nystr%C3%B6m_method
https://en.wikipedia.org/wiki/Geometric_integrator
https://en.wikipedia.org/wiki/Symplectic_integrator
https://en.wikipedia.org/wiki/Hamiltonian_mechanics
https://en.wikipedia.org/wiki/Quantized_state_systems_methods
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Exascale_computing
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Parareal
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_stability

A numerical method is said to be convergent if the numerical solution approaches the exact solution as the step size h goes to 0. More precisely,
we require that for every ODE (1) with a Lipschitz function f and every t* > 0,

All the methods mentioned above are convergent.

Suppose the numerical method is

The local (truncation) error of the method is the error committed by one step of the method. That is, it is the difference between the result
given by the method, assuming that no error was made in earlier steps, and the exact solution:

The method is said to be consistent if

The method has order if

Hence a method is consistent if it has an order greater than 0. The (forward) Euler method (4) and the backward Euler method (6) introduced
above both have order 1, so they are consistent. Most methods being used in practice attain higher order. Consistency is a necessary condition
for convergence, but not sufficient; for a method to be convergent, it must be both consistent and zero-stable.

A related concept is the global (truncation) error, the error sustained in all the steps one needs to reach a fixed time . Explicitly, the global
error at time is where . The global error of a th order one-step method is ; in particular, such a method is
convergent. This statement is not necessarily true for multi-step methods.

For some differential equations, application of standard methods—such as the Euler method, explicit Runge–Kutta methods, or multistep
methods (for example, Adams–Bashforth methods)—exhibit instability in the solutions, though other methods may produce stable solutions.
This "difficult behaviour" in the equation (which may not necessarily be complex itself) is described as stiffness, and is often caused by the
presence of different time scales in the underlying problem.[23] For example, a collision in a mechanical system like in an impact oscillator
typically occurs at much smaller time scale than the time for the motion of objects; this discrepancy makes for very "sharp turns" in the curves
of the state parameters.

Stiff problems are ubiquitous in chemical kinetics, control theory, solid mechanics, weather forecasting, biology, plasma physics, and
electronics. One way to overcome stiffness is to extend the notion of differential equation to that of differential inclusion, which allows for and
models non-smoothness.[24][25]

Below is a timeline of some important developments in this field.[26][27]

1768 - Leonhard Euler publishes his method.

1824 - Augustin Louis Cauchy proves convergence of the Euler method. In this proof, Cauchy uses the implicit Euler method.

1855 - First mention of the multistep methods of John Couch Adams in a letter written by Francis Bashforth.

1895 - Carl Runge publishes the first Runge–Kutta method.

1901 - Martin Kutta describes the popular fourth-order Runge–Kutta method.

1910 - Lewis Fry Richardson announces his extrapolation method, Richardson extrapolation.

1952 - Charles F. Curtiss and Joseph Oakland Hirschfelder coin the term stiff equations.

1963 - Germund Dahlquist introduces A-stability of integration methods.

Boundary value problems (BVPs) are usually solved numerically by solving an approximately equivalent matrix problem obtained by
discretizing the original BVP.[28] The most commonly used method for numerically solving BVPs in one dimension is called the Finite
Difference Method.[3] This method takes advantage of linear combinations of point values to construct finite difference coefficients that
describe derivatives of the function. For example, the second-order central difference approximation to the first derivative is given by:

and the second-order central difference for the second derivative is given by:

Consistency and order

Stability and stiffness

History

Numerical solutions to second-order one-dimensional boundary value problems

https://en.wikipedia.org/wiki/Lipschitz_continuous
https://en.wikipedia.org/w/index.php?title=Zero-stable&action=edit&redlink=1
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Multistep_method
https://en.wikipedia.org/w/index.php?title=Impact_oscillator&action=edit&redlink=1
https://en.wikipedia.org/wiki/Chemical_kinetics
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Solid_mechanics
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Plasma_physics
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Differential_inclusion
https://en.wikipedia.org/wiki/Chronology
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Augustin_Louis_Cauchy
https://en.wikipedia.org/wiki/Multistep_method
https://en.wikipedia.org/wiki/John_Couch_Adams
https://en.wikipedia.org/wiki/Francis_Bashforth
https://en.wikipedia.org/wiki/Carl_David_Tolm%C3%A9_Runge
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
https://en.wikipedia.org/wiki/Martin_Kutta
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
https://en.wikipedia.org/wiki/Lewis_Fry_Richardson
https://en.wikipedia.org/wiki/Extrapolation_method
https://en.wikipedia.org/wiki/Richardson_extrapolation
https://en.wikipedia.org/w/index.php?title=Charles_F._Curtiss&action=edit&redlink=1
https://en.wikipedia.org/wiki/Joseph_Oakland_Hirschfelder
https://en.wikipedia.org/wiki/Stiff_equation
https://en.wikipedia.org/wiki/Germund_Dahlquist
https://en.wikipedia.org/wiki/Stiff_equation#A-stability
https://en.wikipedia.org/wiki/Finite_Difference_Method
https://en.wikipedia.org/wiki/Finite_difference_coefficient
https://en.wikipedia.org/wiki/Central_difference
https://en.wikipedia.org/wiki/Central_difference

In both of these formulae, is the distance between neighbouring x values on the discretized domain. One then constructs a linear
system that can then be solved by standard matrix methods. For example, suppose the equation to be solved is:

The next step would be to discretize the problem and use linear derivative approximations such as

and solve the resulting system of linear equations. This would lead to equations such as:

On first viewing, this system of equations appears to have difficulty associated with the fact that the equation involves no terms that are not
multiplied by variables, but in fact this is false. At i = 1 and n − 1 there is a term involving the boundary values and and
since these two values are known, one can simply substitute them into this equation and as a result have a non-homogeneous linear system of
equations that has non-trivial solutions.

Courant–Friedrichs–Lewy condition

Energy drift

General linear methods

List of numerical analysis topics#Numerical methods for ordinary differential equations

Reversible reference system propagation algorithm

Modelica Language and OpenModelica software

1. Chicone, C. (2006). Ordinary differential equations with
applications (Vol. 34). Springer Science & Business Media.

2. Bradie (2006, pp. 533–655)
3. LeVeque, R. J. (2007). Finite difference methods for ordinary and

partial differential equations: steady-state and time-dependent
problems (Vol. 98). SIAM.

4. Slimane Adjerid and Mahboub Baccouch (2010) Galerkin
methods. Scholarpedia, 5(10):10056.

5. Griffiths, D. F., & Higham, D. J. (2010). Numerical methods for
ordinary differential equations: initial value problems. Springer
Science & Business Media.

6. Hairer, Nørsett & Wanner (1993, pp. 204–215)
7. Alexander, R. (1977). Diagonally implicit Runge–Kutta methods

for stiff ODE’s. SIAM Journal on Numerical Analysis, 14(6), 1006-
1021.

8. Cash, J. R. (1979). Diagonally implicit Runge-Kutta formulae with
error estimates. IMA Journal of Applied Mathematics, 24(3), 293-
301.

9. Ferracina, L., & Spijker, M. N. (2008). Strong stability of singly-
diagonally-implicit Runge–Kutta methods. Applied Numerical
Mathematics, 58(11), 1675-1686.

10. Everhart, E. (1985). An efficient integrator that uses Gauss-Radau
spacings. In International Astronomical Union Colloquium (Vol.
83, pp. 185-202). Cambridge University Press.

11. Weisstein, Eric W. "Gaussian Quadrature." From MathWorld--A
Wolfram Web Resource.
https://mathworld.wolfram.com/GaussianQuadrature.html

12. Butcher, J. C. (1987). The numerical analysis of ordinary
differential equations: Runge-Kutta and general linear methods.
Wiley-Interscience.

13. Hochbruck (2010, pp. 209–286) This is a modern and extensive
review paper for exponential integrators

14. Brezinski, C., & Zaglia, M. R. (2013). Extrapolation methods:
theory and practice. Elsevier.

15. Monroe, J. L. (2002). Extrapolation and the Bulirsch-Stoer
algorithm. Physical Review E, 65(6), 066116.

16. Kirpekar, S. (2003). Implementation of the Bulirsch Stoer
extrapolation method. Department of Mechanical Engineering,
UC Berkeley/California.

17. Nurminskii, E. A., & Buryi, A. A. (2011). Parker-Sochacki method
for solving systems of ordinary differential equations using
graphics processors. Numerical Analysis and Applications, 4(3),
223.

18. Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical
integration: structure-preserving algorithms for ordinary
differential equations (Vol. 31). Springer Science & Business
Media.

19. Hairer, E., Lubich, C., & Wanner, G. (2003). Geometric numerical
integration illustrated by the Störmer–Verlet method. Acta
Numerica, 12, 399-450.

20. Gander, Martin J. 50 years of Time Parallel Time Integration.
Contributions in Mathematical and Computational Sciences. 9
(1 ed.). Springer International Publishing. doi:10.1007/978-3-319-
23321-5 (https://doi.org/10.1007%2F978-3-319-23321-5).
ISBN 978-3-319-23321-5.

21. Nievergelt, Jürg (1964). "Parallel methods for integrating
ordinary differential equations". Communications of the ACM. 7
(12): 731–733. doi:10.1145/355588.365137 (https://doi.org/10.114
5%2F355588.365137).

22. Higham, N. J. (2002). Accuracy and stability of numerical
algorithms (Vol. 80). SIAM.

23. Miranker, A. (2001). Numerical Methods for Stiff Equations and
Singular Perturbation Problems: and singular perturbation
problems (Vol. 5). Springer Science & Business Media.

24. Markus Kunze and Tassilo Kupper (2001). "Non-smooth
Dynamical Systems: An Overview". In Bernold Fiedler (ed.).
Ergodic Theory, Analysis, and Efficient Simulation of Dynamical
Systems. Springer Science & Business Media. p. 431. ISBN 978-
3-540-41290-8.

25. Thao Dang (2011). "Model-Based Testing of Hybrid Systems". In
Justyna Zander, Ina Schieferdecker and Pieter J. Mosterman (ed.).
Model-Based Testing for Embedded Systems. CRC Press. p. 411.
ISBN 978-1-4398-1845-9.

See also

Notes

https://en.wikipedia.org/wiki/Numerical_linear_algebra
https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
https://en.wikipedia.org/wiki/Energy_drift
https://en.wikipedia.org/wiki/General_linear_methods
https://en.wikipedia.org/wiki/List_of_numerical_analysis_topics#Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Reversible_reference_system_propagation_algorithm
https://en.wikipedia.org/wiki/Modelica
https://en.wikipedia.org/wiki/OpenModelica
https://mathworld.wolfram.com/GaussianQuadrature.html
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-319-23321-5
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-319-23321-5
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F355588.365137
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-540-41290-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4398-1845-9

Bradie, Brian (2006). A Friendly Introduction to Numerical Analysis. Upper Saddle River, New Jersey: Pearson Prentice Hall. ISBN 978-0-
13-013054-9.

J. C. Butcher, Numerical methods for ordinary differential equations, ISBN 0-471-96758-0

Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition,
Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8.

Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition,
Springer Verlag, Berlin, 1996. ISBN 3-540-60452-9.
(This two-volume monograph systematically covers all aspects of the field.)

Hochbruck, Marlis; Ostermann, Alexander (May 2010). "Exponential integrators". Acta Numerica. 19: 209–286.
Bibcode:2010AcNum..19..209H (https://ui.adsabs.harvard.edu/abs/2010AcNum..19..209H). CiteSeerX 10.1.1.187.6794 (https://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.187.6794). doi:10.1017/S0962492910000048 (https://doi.org/10.1017%2FS0962492910000048).

Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 1996. ISBN 0-521-55376-8
(hardback), ISBN 0-521-55655-4 (paperback).
(Textbook, targeting advanced undergraduate and postgraduate students in mathematics, which also discusses numerical partial
differential equations.)

John Denholm Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991. ISBN 0-471-92990-
5.
(Textbook, slightly more demanding than the book by Iserles.)

Joseph W. Rudmin, Application of the Parker–Sochacki Method to Celestial Mechanics (http://csma31.csm.jmu.edu/physics/rudmin/ps.p
df), 1998.

Dominique Tournès, L'intégration approchée des équations différentielles ordinaires (1671-1914) (https://web.archive.org/web/2013041
3090625/http://www.reunion.iufm.fr/dep/mathematiques/calculsavant/Equipe/tournes.html), thèse de doctorat de l'université Paris 7 -
Denis Diderot, juin 1996. Réimp. Villeneuve d'Ascq : Presses universitaires du Septentrion, 1997, 468 p. (Extensive online material on
ODE numerical analysis history, for English-language material on the history of ODE numerical analysis, see, for example, the paper
books by Chabert and Goldstine quoted by him.)

Pchelintsev, A.N. (2020). "An accurate numerical method and algorithm for constructing solutions of chaotic systems" (https://arxiv.org/
pdf/2011.10664.pdf) (PDF). Journal of Applied Nonlinear Dynamics. 9 (2): 207–221. doi:10.5890/JAND.2020.06.004 (https://doi.org/10.58
90%2FJAND.2020.06.004).

kv (https://github.com/mskashi/kv) on GitHub (C++ library with rigorous ODE solvers)

INTLAB (http://www.ti3.tu-harburg.de/intlab/) (A library made by MATLAB/GNU Octave which includes rigorous ODE solvers)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Numerical_methods_for_ordinary_differential_equations&oldid=1039445366"

This page was last edited on 18 August 2021, at 19:10 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy
Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

26. Brezinski, C., & Wuytack, L. (2012). Numerical analysis: Historical
developments in the 20th century. Elsevier.

27. Butcher, J. C. (1996). A history of Runge-Kutta methods. Applied
numerical mathematics, 20(3), 247-260.

28. Ascher, U. M., Mattheij, R. M., & Russell, R. D. (1995). Numerical
solution of boundary value problems for ordinary differential
equations. Society for Industrial and Applied Mathematics.

References

External links

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-013054-9
https://en.wikipedia.org/wiki/John_C._Butcher
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-471-96758-0
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/3-540-56670-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/3-540-60452-9
https://en.wikipedia.org/wiki/Marlis_Hochbruck
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2010AcNum..19..209H
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.6794
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1017%2FS0962492910000048
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-521-55376-8
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-521-55655-4
https://en.wikipedia.org/wiki/Numerical_partial_differential_equations
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-471-92990-5
http://csma31.csm.jmu.edu/physics/rudmin/ps.pdf
https://web.archive.org/web/20130413090625/http://www.reunion.iufm.fr/dep/mathematiques/calculsavant/Equipe/tournes.html
https://arxiv.org/pdf/2011.10664.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.5890%2FJAND.2020.06.004
https://github.com/mskashi/kv
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/C%2B%2B
http://www.ti3.tu-harburg.de/intlab/
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/w/index.php?title=Numerical_methods_for_ordinary_differential_equations&oldid=1039445366
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

