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Figure 1.10. Systemic arterial blood pressure (P) as a function of time (t). The 
normal maximum (systolic) and minimum (diastolic) pressures are indicated on 
the pressure axis, and a typical period of the heartbeat is indicated on the time 
axis. 

A self-mnsistent closed foramen solution is found in the Exercises at the 
end of the chapter. This describes the circulation after birth when Rp < R,. 
One property of this solution is Qd < 0, which means that the flow in the 
ductus has reversed compared to the fetal case. After birth the flow through 
the ductus is a left-to-right shunt, and it carries fully oxygenated blood from 
the aorta back into the pulmonary arterial tree. The high 0 2 content of 
this blood stimulates the closure of the ductus, completing the transition 
to a single-loop circulation. 

1.11 Dynamics of the Arterial Pulse 

In the foregoing sections we have treated the circulation as though all of 
the pressures, flows, and volumes are constant in time. This is not correct. 
Actually, the heart ejects blood into the arteries in discrete bursts. During 
these contractions of the heart, the blood pressure rises rapidly, and it falls 
again between contractions as blood runs out of the arteries through the 
tissues. The result of this process is the arterial pulse, which can be felt 
wherever an artery is convenient to press (e.g., at the wrist) and which 
can be used to count the heart rate. The waveform of the arterial pulse is 
sketched in Figure 1.10. 
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Figure 1.11. Volume conservation in pulsatile flow. The rate of change of volume 
of a vessel is equal to its inflow (Ql) minus its outflow (Q2). 

When blood pressure is measured with an air cuff on the upper arm, 
the actual quantities determined by this measurement are the maximum 
(systolic) and minimum (diastolic) pressures achieved by the arterial pulse. 
A blood pressure of 120/80 means that the systolic arterial blood pressure 
is 120 mmHg and the diastolic arterial blood pressure is 80 mmHg. The 
difference between these values (in this case 40 mmHg) is called the pulse 
pressure. 

The names systolic and diastolic refer to the phases of the cardiac cy
cle (see Section 1.4). Under normal conditions, the systolic pressure in the 
systemic arteries is essentially the same as the systolic left ventricular pres
sure, since the aortic valve is open during systole. The diastolic pressure 
in the ventricle is much lower than that in the arteries. This is possible 
because the aortic valve is closed during diastole. 

In this section we shall describe the simplest model that can account for 
the qualitative form of the arterial pulse. This model will be used to show 
how the systolic and diastolic pressures depend on the parameters of the 
heart and circulation. It will also be used to justify the simpler steady flow 
models that were studied in the foregoing sections of this chapter. 

We begin by considering a compliance vessel that is not in the steady 
state (see Figure 1.11). Thus, the inflow Q1 (t) is not equal to the outflow 
Q2 (t) at every instant. When they are not equal, the volume of the vessel 
changes. In fact, if V(t) denotes the volume of the vessel at timet, we have 
a differential equation: 

(1.11.1) 

(Here and below we write V for dV/dt.) This says that the rate of change 
of the vessel's volume is the difference between the flow in and the flow 
out. When V =constant, Q 1 = Q2 , which is the steady-state relation that 
we have used up to now. 

This differential equation describes how the volume changes, but it can 
be converted into one relating the pressure in the vessel to the flows in and 
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out by using the equation of a compliance vessel: Either 

V(t) = CP(t) or V(t) = CP(t) + Vd 

(see Section 1.3). In either case, we have V = C P, so 

(1.11.2) 

This is the equation that governs pressure changes in a compliance vessel 
in the case of unsteady flow. 

Next, we use this equation to study the systemic arterial tree. Now, 
P = Psa, the systemic arterial pressure; C = Csa, the systemic arterial 
compliance, Q1 = QL, the output of the left heart, and Q2 = Q., the 
blood flow through the systemic tissues. For Q., we have the equation 
Qs = (Psa- Psv)/Rs, which we approximate by 

Q _ Psa 
s- Rs 

since Psv « Psa· Thus, (1.11.2) becomes 

(1.11.3) 

(1.11.4) 

During diastole, when the aortic valve is closed, QL = 0. In that case, the 
solution of (1.11.4) is 

Psa(t) = Psa(O) exp (- Rs~sJ. (1.11.5) 

The constant Psa(O) remains to be determined. 
To find it, we consider ventricular systole. We make the simplifying 

assumption that the entire stroke volume ~ V0 is ejected from the heart 
instantaneously. Then we cannot use equation (1.11.4) for systole, at least 
not in an elementary way. We can, however, figure out what happens during 
systole by considering the change in arterial pressure produced in the arter
ies by a sudden change in volume of magnitude ~ V0 : From the compliance 
equation v = c p + vd' it is clear that 

(1.11.6) 

Now suppose that. the heartbeat is a periodic phenomenon. That is, suppose 
that everything repeats exactly from one beat to the next. Let the duration 
of each heartbeat be T, so that the heart rate is 1/T. Then the diastolic 
arterial pressure is Psa(T) and the systolic arterial pressure is Psa(O) (see 
Figure 1.12). Thus, the jump in pressure caused by cardiac ejection is given 
by the formula 

(1.11.7) 
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Figure 1.12. Idealized arterial pulse, under the assumption that ejection of the 
entire stroke volume from the left ventricle occurs instantaneously. T = period 
of the heartbeat, Psa(O) = systolic pressure, Psa(T) = diastolic pressure. 

Now lett= Tin (1.11.5) and substitute (1.11.7) into (1.11.6) to obtain a 
pair of equations for Psa(O) and Psa(T). The result is 

where 

ePsa(O), 

Psa(O)- Psa(T), 

8 = exp (- (Rs~sa)). 
Note that 0 < e < 1. Solving these equations gives 

~Vo 

Csa(1 -e)' 
~voe 

Csa(1- e)' 

(1.11.8) 

(1.11.9) 

(1.11.10) 

(1.11.11) 

(1.11.12) 

which are formulae for the systolic and diastolic pressures in terms of the 
stroke volume, the arterial compliance, the systemic resistance, and the 
heart rate. Subtracting these two equations, we recover (1.11.9), which is 
the formula for the pulse pressure. 

What about the mean arterial pressure? A useful definition of the mean 
of a periodic function, say j(t), is 

1 {T 
(f) = T lo f(t) dt, 
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where the period off is T and where integration is over any period, e.g., 
over the interval (0, T). With this notation, we define the mean arterial 
pressure to be 

(Psa) = ~ 1T Psa(t) dt. (1.11.13) 

(This is approximately the average of N samples of the function Psa(t) 
taken at equally spaced times that span the interval (0, T]. The approx
imation becomes exact as N -+ oo.) We leave it as an exercise to check 
that 

(P. ) = ~D.Vo 
sa T · (1.11.14) 

Since D. V0 /T is the cardiac output, this equation can be interpreted as 
(Psa) = QRs, which is the equation that holds in the steady state case (if we 
neglect Psv as we are doing here). This explains how a steady-state model 
still has significance for a pulsatile circulation: The quantities appearing in 
the steady-state model are the time averages of the corresponding pulsatile 
quantities. 1 

We have determined the form of the arterial pulse in the periodic case, 
where everything repeats exactly from one beat to the next. This is not 
quite correct even in the normal circulation, where the heart rate and stroke 
volumes change slightly in response to the phases of breathing. The assump
tion of periodicity is even less appropriate for individuals with abnormal 
rhythms of the heart where successive heartbeats may be considerably dif
ferent from each other, both in their durations and in their stroke volumes. 
As an extreme example of an aperiodic arterial pulse, consider what hap
pens if the heart has just been started following a period of cardiac arrest. 
The arterial pressure is initially very low, and it has to build up toward its 
equilibrium values over the first few beats. The rest of this section studies 
these transient situations. 

If the stroke volume and timing vary from beat to beat, we need notation 
to tell us what happens on each beat. Let j = 1, 2, ... be an index counting 
beats of the heart. Let tj be the time that the jth beat occurs, and let D. Vj 
be the corresponding stroke volume. Since the pressure Psa(t) jumps at 
the times ti (see Figure 1.13), we need notation to distinguish the arterial 
pressures just before and just after cardiac ejection. Let 

Psa(tj) =arterial pressure just before ejection (diastolic); 

1This statement is only approximate. In a pulsatile version of the whole circulation 
model considered above, the pressures that determine the cardiac outputs would be 
the end-diastolic venous pressures, not the mean pressures, since it is the end-diastolic 
pressures that determine the volumes of the ventricular chambers just prior to ejection. 
More generally, any nonlinearity that might be introduced to make the model more 
realistic would further degrade the correspondence between the steady-flow results and 
the mean values of the pulsatile results. 
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Figure 1.13. Idealized arterial pulse in the presence of an irregular heart rhythm. 
tj = time of the jth ventricular systole (idealized here as instantaneous), 
Psa(tj) = diastolic pressure immediately before the jth ventricular systole, 
Psa(tj) = systolic pressure immediately after the jth ventricular systole. 

Psa(tj) =arterial pressure just after ejection (systolic). 
Between beats of the heart, we have, as before, the differential equation 

c.aPsa = -P.a/R., 

but now it is more convenient to write the solutions in the form 

Psa(t) = Psa(tj) exp( -(t- tj )/(RsCsa)) 

forti < t < ti+l· Setting t = tj+ 1 gives 

Psa(tj+l) = Psa(tj)ej, 

where 

and 

(1.11.15) 

(1.11.16) 

(1.11.17) 

(1.11.18) 

Equation (1.11.16) gives the diastolic pressure just before beat j + 1 in 
terms of the systolic pressure just after beat j. 

The equation for the jump in arterial pressure on beat j now takes the 
form 

(1.11.19) 
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Now suppose that we are given any sequence of times tj and stroke volumes 
~ Vj together with the constant parameters Gsa and Rs. If we are told the 
diastolic pressure just before the first beat, we can use (1.11.19) to find 
the systolic pressure just after that beat. Then we can use (1.11.16) to find 
the diastolic pressure just before the next beat. Repeating this process we 
can predict the entire sequence of diastolic and systolic pressures, however 
irregular it might be. 

The equations that we have just developed for the aperiodic situation 
should include the periodic arterial pulse as a special case. Suppose the 
heartbeat is regular, so that tH1 - ti = T and ~Vj = ~Vo for all j. Then 
ej reduces to e, and equations (1.11.16) and (1.11.19) become 

Psa(tj+l) Psa(tj)8, 

Psa(tj} = Psa(tj) + ~Vo/Csa· 
(1.11.20) 

(1.11.21) 

Now we can look for a solution of these equations in which Psa(tj} and 
Psa(tj) are independent of j. We express this by means of the notation 

P.a(tj) P8~ (systolic pressure), (1.11.22) 

Psa(tj) P.-;;: (diastolic pressure). (1.11.23) 

Thus, P.t and P,;;~ satisfy 

P.-;;: = P.~e 
P8~ = P~ + ~Vo/Csa· 

(1.11.24) 

(1.11.25) 

These are the same equations as (1.11.8) and (1.11.9) for the periodic sys
tolic and diastolic pressures. This confinns that our theory of irregular 
arterial pulses contains the periodic pulse as a special case. (There are 
other solutions of (1.11.20) and (1.11.21) that do not correspond to ape
riodic pressure pulse even though the heartbeat and stroke volume are 
regular. Can you show that these solutions approach the periodic pulse as 
time increases?) 

1.12 Computer Simulation of Pulsatile Blood Flow 

In this section we show how computers can be used to solve the equations 
of time dependent pressure, flow, and volume in the circulatory system. 
We start with a simple case, the systemic arterial pulse, and work up to 
a model of the circulation as a whole. Already in the case of the arterial 
pulse, we shall see that the use of computers gives us the freedom to make 
our mathematical models more complicated and more realistic than before. 

The equations of the systemic arterial pulse that we shall use in this 
section are as follows: 

(1.12.1) 
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Figure 1.14. Outflow from the left ventricle trough the aortic valve into the 
systemic arterial tree is here denoted QAo(t). It is a periodic function whose 
triangular waveform is determined by the parameters Qmax =peak flow, Tmax = 
time of peak flow, Ts = duration of systole, and T = duration of heartbeat. Note 
that the stroke volume is given by the integral of QAo(t) over one heartbeat, 
which is equal to QmaxTs/2, and that the cardiac output is the stroke volume 
times the heart rate, which is therefore equal to QmaxTs/(2T). 

(1.12.2) 

(1.12.3) 

In these three equations, the three unknowns (all of which are functions 
of time) are Vsa, the systemic arterial volume; P8a, the systemic arterial 
pressure; and Q8 , the flow through the systemic resistance. Note that Q. can 
also be described as the outflow from the systemic arteries. The systemic 
arterial pulse is driven by the inflow to the systemic arteries, which is the 
flow through the aortic valve, denoted here by QAo· This is a function of 
time, which for purposes of modeling just the systemic arterial pulse we 
shall treat as a given function of time. Its specific form will be specified 
later. The parameters appearing in these equations are (Vsa)d, the volume 
of the systemic arteries when Psa = 0; C8a, the compliance of the systemic 
arteries; and R., the systemic resistance. These three parameters are all 
(given) constants. (But (Vsa)d drops out of the equations when we express 
everything in terms of the pressure, below.) 

Equation ( 1.12.1) expresses conservation of volume for the systemic arter
ies: The rate of change of volume is the inflow minus the outflow. Equation 
(1.12.2) is the compliance relationship between systemic arterial pressure 
and volume. Equation (1.12.3) describes the flow through the systemic re
sistance in terms of the systemic arterial pressure. In writing (1.12.3), we 
have made the approximation of neglecting the systemic venous pressure 
in comparison to the systemic arterial pressure. 

By substituting equations (1.12.2) and (1.12.3) into equation (1.12.1), 
we reduce the above system to a single equation for the systemic arterial 
pressure: 

(1.12.4) 
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Except for slight differences in notation, the theory that we have outlined 
here is the same as in Section 1.11, but with this important difference: Here 
we allow QAo to be any (given) function of time. The specific function that 
we shall use is shown in Figure 1.14 and may be described mathematically 
as follows. First, Q Ao is a periodic function of time: 

(1.12.5) 

where Tis the period of the heartbeat (1/T is the heart rate). Because QAo 
is periodic, we can define it completely by specifying it in any one period, 
say (0, T). This is done as follows: 

{ 
Qmaxt/Tmax, 0 :S t :S Tmax 

QAo(t) = Qmax(Ts- t)j(Ts- Tmax), Tmax :S t :S Ts 
0, Ts :S t :S T 

(1.12.6) 

where Qmax is the maximum flow, Tmax is the time at which maximum 
flow occurs (relative to the beginning of systole), and Ts is the duration 
of systole. Note that the stroke volume (integral of QAo over one cycle) 
is given by QmaxTs/2 and that the cardiac output is therefore given by 
QmaxTs/(2T). Reasonable choices of the parameters that determine QAo 
are T = 0.0125 minutes, Ts = 0.0050 minutes, Tmax = 0.0020 minutes, 
Qmax = 28 liters/minute. Note that this gives a stroke volume of 0.070 
liters and a cardiac output of 5.6 liters/minute. 

The next step is to introduce a numerical method for the (approximate) 
solution of equation (1.12.4). Such a method can be found by replacing the 
time derivative in that equation by a difference quotient. There are several 
ways to do this, but we choose a "backward" method, for reasons that will 
be discussed later (see the discussion following equation 1.12.33). When we 
do this, equation (1.12.4) becomes 

(1.12.7) 

The way that we shall use this equation is to solve it for Psa(t) in terms of 
Psa(t- 6..t) and other known quantities, including QAo(t). The solution is: 

P. ( ) _ Psa(t- 6..t) + 6..t QAo(t)/Csa 
sa t - 1 + 6..t/(flsCsa) . (1.12.8) 

Now if we have a starting value Psa(O), we can use (1.12.8) repeatedly to find 
P8a(6..t), Psa(26..t), Psa(36..t), and so on, until we have spanned whatever 
interval of time may be of interest. 

Two questions may be bothering the reader at this point: How should 
I choose the starting value Psa(O), and how should I choose the time step 
6..t? 

The answer to the first question is that you can choose any value at all 
for Psa(O). No matter what pressure you start at, the arterial pulse will 
eventually settle down into the same periodic waveform. When you get 
your computer program working, try different starting values and compare 
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the results. The arterial pulse will gradually "forget" what the starting 
value was. So you don't have to worry about this, except that you have to 
specify some starting value, and you have to run your program long enough 
for the pulse waveform to settle down. Now you might say in response to 
this, "Why don't I just start at the diastolic pressure, since I know what 
that is (80 mmHg)?" The trouble with this is that you know the diastolic 
pressure only under normal conditions. A computer program such as the 
one we are creating here wouldn't be of much use if it could only handle one 
case. What you want to do is to change parameters and see what happens. 
As soon as you change parameters, you don't know the diastolic pressure 
anymore, so you will just have to let the program run until the pressure 
waveform settles into its periodic pattern. 

The answer to the second question is that flt has to be "small enough." 
Recall that we made an approximation in replacing Fsa by ( Psa ( t) - Psa ( t
flt) )/ flt. This approximation gets better as flt gets smaller. To tell whether 
flt is small enough, you should rerun your program with flt replaced by 
flt/2. (Note that with flt half as big you will have to take twice as many 
steps to span the same amount of time.) If the results are essentially the 
same (to within whatever tolerance you think is reasonable), then flt is 
indeed small enough. If not, then you have to keep making flt smaller. 
To get into the right ballpark in the first place, you should choose flt 
small compared to any of the times that define the problem. In our case, 
a reasonable choice might be flt = O.OlT. With this choice, it takes 100 
steps to span a cardiac cycle. 

The numerical method that we have just outlined is implemented by the 
following Matlab program. It involves one script and two functions. We shall 
describe the functions first, so it will be clear what the script is doing when 
it calls these functions. The functions are QAo_now(t), which computes 
the flow through the aortic valve at time t according to equations (1.12.5~ 
1.12.6), and Psa_new(Psa_old,QAo), which computes the "new" pressure 
Psa(t) in terms of the "old" pressure Psa(t- flt) and the given flow QAo(t) 
through the aortic valve. These functions read as follows: 

function Q=QAo_now(t) 
%filename: QAo_now.m 
global T TS TMAX QMAX; 
tc=rem(t,T); % tc=time elapsed since 
%the beginning of the current cycle 
%rem(t,T) is the remainder when t is divided by T 
if(tc<TS) 

%SYSTOLE: 
if(tc<TMAX) 

%BEFORE TIME OF MAXIMUM FLOW: 
Q=QMAX*tc/TMAX; 

else 



1.12. Computer Simulation of Pulsatile Blood Flow 43 

%AFTER TIME OF PEAK FLOW: 
Q=QMAX*(TS-tc)/(TS-TMAX); 

end 
else 

%DIASTOLE: 
Q=O; 

end 

function Psa=Psa_new(Psa_old,QAo) 
%filename: Psa_new.m 
global Rs Csa dt; 
Psa=(Psa_old+dt•QAo/Csa)/(l+dt/(Rs•Csa)); 

With these two functions in hand, we can write a script that we shall 
call sa for "systemic arteries." It loops over time and computes Psa(t). It 
will call another script in_sa that does initialization. These scripts read as 
follows: 

%filename: sa.m 
clear all % clear all variables 
elf % and figures 
global T TS TMAX QMAX; 
global Rs Csa dt; 
in_sa %initialization 
for klok=l:klokmax 

t=klok•dt; 
QAo=QAo_now(t); 
Psa=Psa_new(Psa,QAo); %new Psa overwrites old 
%Store values in arrays for future plotting: 
t_plot(klok)=t; 
QAo_plot(klok)=QAo; 
Psa_plot(klok)=Psa; 

end 
%Now plot results in one figure 
%with QAo(t) in upper frame 
% and Psa(t) in lower frame 
subplot(2,1,1), plot(t_plot,QAo_plot) 
subplot(2,1,2), plot(t_plot,Psa_plot) 

%filename: in_sa.m (initialization for the script sa) 
T =0.0125 %Duration of heartbeat (minutes) 
TS=0.0050 
TMAX=0.0020 
QMAX=28.0 
Rs=17.86 
Csa=0.00175 
%This value 

%Duration of systole (minutes) 
%Time at which flow is max (minutes) 
%Max flow through aortic valve (liters/minute) 
%Systemic resistance (mmHg/(liter/minute)) 
%Systemic arterial compliance (liters/(mmHg)) 

of Csa is approximate and will need adjustment 
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Figure 1.15. Model of the left heart and systemic arteries. Pressures and flows 
are PLA = left atrial pressure, PLv = left ventricular pressure, Psa = systemic 
arterical pressure, QM; = flow through the mitral valve (indicated here by a 
dotted arrow because the mitral valve is closed at the moment shown), QAo = 
flow through the aortic valve, and Q. = outflow from the systemic arterial tree, 
i.e., aggregate flow through all of the tissues of the body. 

%to make the blood pressure be 120/80. 
dt=0.01*T %Time step duration (minutes) 
%This choice implies 100 timesteps per cardiac cycle. 
klokmax=15*T/dt %Total number of timesteps 
%This choice implies simulation of 15 cardiac cycles . 
Psa=O %Initial value of Psa (mmHg) 
%Any initial value is OK here; try some others. 
%Initialize arrays to store data for plotting: 

t_plot=zeros(1,klokmax); 
QAo_plot=zeros(1,klokmax); 
Psa_plot=zeros(1,klokmax) ; 

The program for the systemic arterial pulse is now complete. It is the 
collection offour files sa.m, in_sa.m, QAo_now .m, and Psa_new .m. To invoke 
it from within a Matlab session launched from the same directory where 
these files reside, just type "sa" at the Matlab prompt "» ". Physiological 
applications of this computer program are outlined in Section (1.13) . 

The next step in building up towards a computer model of t he whole 
circulation is to attach the left heart to t he systemic art eries. T his model 
is shown in Figure 1.15. T he model of the left heart that we shall use was 
already outlined in Section 1.4; it treats the left ventricle as a compliance 
vessel the compliance of which is not constant but instead is some given 
function of time. This given function CLv(t) will replace QA0 (t) as the 
periodic time function that drives the cardiac cycle, and Q A0 (t) will become 
one of the unknowns of the model. 




