The Heart & Circulation (III)

1.11 Dynamics of the Arterial Pulse

- Fig. 1.10: systemic arterial blood pressure (P) as a function of time (t).
- Fig. 1.15: Model of the left heart and systemic arteries.

Figure 1.10. Systemic arterial blood pressure (P) as a function of time (t). The normal maximum (systolic) and minimum (diastolic) pressures are indicated on the pressure axis, and a typical period of the heartbeat is indicated on the time axis.

Figure 1.15. Model of the left heart and systemic arteries. Pressures and flows are $P_{\rm LA}$ = left atrial pressure, $P_{\rm LV}$ = left ventricular pressure, $P_{\rm sa}$ = systemic arterical pressure, $Q_{\rm Mi}$ = flow through the mitral valve (indicated here by a dotted arrow because the mitral valve is closed at the moment shown), $Q_{\rm Ao}$ = flow through the aortic valve, and $Q_{\rm s}$ = outflow from the systemic arterial tree, i.e., aggregate flow through all of the tissues of the body.

- Let's build a simple model
- Assume a compliance vessel, but not in the steady state (see Fig. 1.11)

Figure 1.11. Volume conservation in pulsatile flow. The rate of change of volume of a vessel is equal to its inflow (Q_1) minus its outflow (Q_2) .

- The change in volume of vessel = the rate of change of the vessel's volume is the difference between the inflow and the outflow.

$$\dot{V} = \frac{dV}{dt} = Q_1 - Q_2$$

If $Q_1 = Q_2$, then steady-state.

where $Q_1(t) = Q_1 = \text{inflow}, Q_2(t) = Q_2 = \text{outflow}$

- For a compliance vessel

$$V(t) = CP(t) \text{ or } V(t) = CP(t) + V_d$$
$$\dot{V} = C\dot{P} = Q_1 - Q_2$$

- Introduce $P = P_{sa}$, $C = C_{sa}$,

output of the left heart $Q_1 = Q_L$, blood flow through the systemic tissue $Q_2 = Q_S$,

$$Q_s = \frac{(P_{sa} - P_{sv})}{R_s} \approx \frac{P_{sa}}{R_s}$$
 since $P_{sv} \ll P_{sa}$.

- Now we have

$$C_{sa}\dot{P}_{sa} = Q_L(t) - \frac{P_{sa}}{R_s} \quad (*)$$

- During diastole, when the aortic value is closed, $Q_L = 0$,

$$P_{sa}(t) = P_{sa}(0)\exp(\frac{-t}{R_s c_{sa}}) \quad (**)$$

This is the solution for (*)

- From $V(t) = CP(t) + V_d$, a sudden change in volume of magnitude $\Delta V_0 = C_{sa}\Delta P_{sa}$.
- During the duration of the each heartbeat, T and assume the heart beat is periodic $0 \sim T$. $\Delta P_{sa} = P_{sa}(0) - P_{sa}(T) = \text{Systolic Arterial Pressure} - \text{Diastolic Arterial Pressure}$ (see Fig. 1.12)

Figure 1.12. Idealized arterial pulse, under the assumption that ejection of the entire stroke volume from the left ventricle occurs instantaneously. T = period of the heartbeat, $P_{sa}(0) =$ systolic pressure, $P_{sa}(T) =$ diastolic pressure.

-
$$t \rightarrow T$$
 in (**)
 $P_{sa}(T) = P_{sa}(0) \exp\left(\frac{-T}{R_s C_{sa}}\right) = P_{sa}\theta$
 $\Delta P_{sa} = \frac{\Delta V_0}{C_{sa}} = P_{sa}(0) - P_{sa}(T)$

- Two equations and two unknowns for $P_{sa}(0)$ and $P_{sa}(T)$.
- Note $0 < \theta < 1$, the solutions of idealized arterial pulse are,

$$P_{sa}(0) = \frac{\nabla V_0}{C_{sa}(1-\theta)}$$
$$P_{sa}(T) = \frac{\nabla V_0 \theta}{C_{sa}(1-\theta)}$$

given $\theta = \exp\left(\frac{-T}{R_s C_{sa}}\right)$.

1.12 Computer Simulation of Pulsatile Blood Flow

- Solve the equations of time dependent pressure, flow, and volume in the circulatory system.
- The systemic arterial pulse
- Governing equations,

$$\dot{V} = \frac{dV}{dt} = Q_1 - Q_2$$

$$\dot{V}_{sa} = Q_{A_0} - Q_s \tag{1}$$

$$V_{sa} = V_{sad} + C_{sa}P_{sa} \tag{2}$$

$$Q_s = \frac{P_{sa}}{R_s} \tag{3}$$

- $V_{sa}(t)$: the systemic arterial volume
- 3 unknowns $P_{sa}(t)$: systemic arterial pressure $Q_s(t)$: flow via systemic resistance (outflow)
- Given known constants Q_{A_0} : inflow to the systemic arteries

 V_{sa_d} : systemic artery volume at $P_{sa} = 0$

 C_{sa} : compliance of systemic arteries

R_s : systemic resistance

- $\dot{V}_{sa} = Q_{A_0} Q_s$: conservation of volume for the systemic arteries. The rate of volume is the inflow minus the outflow.
- $V_{sa} = V_{sad} + C_{sa}P_{sa}$: compliance relationship between volume and pressure
- $Q_s = \frac{P_{sa}}{R_s}$: flow through the systemic resistance
- By substituting (2) and (3) into (1), and drop V_{sa_d} (=0)

$$C_{sa}\dot{P}_{sa} = Q_{A_0} - \frac{P_{sa}}{R_s}$$

- Important

 $Q_{A_0} = Q_{A_0}(t)$ given in Fig. 1.14

 $Q_{A_0}(t) = Q_{A_0}(t+T)$ a periodic function of time where T is a period of the heartbeat and 1/T is the heart rate.

- Express then Fig. 1.14 as a set of equations

$$Q_{A_0}(t) = \begin{cases} \frac{Q_{max}t}{T_{max}}, & 0 \le t \le T_{max} \\ \frac{Q_{max}(T_s - t)}{T_s - T_{max}}, & T_{max} \le t \le T_s \\ 0, & T_s \le t \le T \end{cases}$$
(see Fig. 1.14)

where Q_{max} : the maximum flow

 T_{max} : the time of which maximum flow occurs

 T_s : the duration of systole

stroke volume = integral of Q_{A_0} over one cycle = $\frac{Q_{max}T_s}{2}$

Figure 1.14. Outflow from the left ventricle trough the aortic valve into the systemic arterial tree is here denoted $Q_{Ao}(t)$. It is a periodic function whose triangular waveform is determined by the parameters $Q_{max} = \text{peak}$ flow, $T_{max} = \text{time of peak flow}$, $T_S = \text{duration of systole}$, and T = duration of heartbeat. Note that the stroke volume is given by the integral of $Q_{Ao}(t)$ over one heartbeat, which is equal to $Q_{max}T_S/2$, and that the cardiac output is the stroke volume times the heart rate, which is therefore equal to $Q_{max}T_S/(2T)$.

- For Q_{A_0} , T=0.0125min, T_s=0.0050min, T_{max} = 0.002 min, Q_{max} = 28L/min, then stroke volume = 0.07L and cardiac output = 5.6L/min

Numerical Solution via Backward Euler Method

- Numerical Solution of $C_{sa}\dot{P}_{sa} = Q_{A_0} - \frac{P_{sa}}{R_s}$

Replace the time derivative by a difference quotient.

$$\frac{C_{sa}[P_{sa}(t) - P_{sa}(t - \Delta t)]}{\Delta t} = Q_{A_0}(t) - \frac{P_{sa}(t)}{R_s}$$
$$P_{sa}(t) = \frac{P_{sa}(t - \Delta t) + \Delta t Q_{A_0}(t)/C_{sa}}{1 + \Delta t/(R_s C_{sa})}$$

given $P_{sa}(0)$, compute $P_{sa}(\Delta t)$, $P_{sa}(2\Delta t)$, ...

- Questions
 - 1) $P_{sa}(0)$ and Δt , how to choose?
 - 2) $P_{sa}(0)$ any value for transition to steady state?
 - 3) $\Delta t = ?$ Small enough? what happens to the approximation $\frac{[P_{sa}(t) P_{sa}(t \Delta t)]}{\Delta t} \dot{P}_{sa}$