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left cardiac outputs: 

(1.4.8) 

(1.4.9) 

Throughout this section we have tacitly assumed that the pressure 
outside the heart is zero (atmospheric). If not, then the distending pres­
sures during diastole are not simply Psv and Ppv but Psv - Pthorax and 
Ppv - Pthorax, where Pthorax is the pressure in the chest. In fact, Pthorax is 
slightly negative (with respect to the atmosphere), and this contributes to 
increased cardiac output by increasing the end-diastolic volume VEo. This 
effect was first noticed because it disappears when the chest is opened dur­
ing surgery. In the model developed below, we assume for simplicity that 
Pthorax = 0 so that we can use (1.4.8) and (1.4.9) without modification. 
Then, effects of Hhorax < 0 are considered briefly in Exercises 1.8 through 
1.9. 

1.5 Mathematical Model of the Uncontrolled 
Circulation 

In this section we put together the ideas that have been developed above 
to construct a mathematical model of the circulation. In the form that we 
first present it, the model lacks the control mechanisms that regulate the 
circulation and make it serve the needs of the body. In subsequent sections 
we will use this model in several ways: 

1. to study the self -regulating properties of the circulation, independent 
of external control mechanisms; 

2. to explain the need for external control mechanisms; 

3. to serve as a foundation on which we can construct a simple model 
of the control of circulation. 

Our model is defined by the following equations (see Figure 1.6): First, 
we have the equations of the right and left hearts: 

(1.5.1) 

(1.5.2) 

Second, we make the assumption that the systemic and pulmonary arteries 
and veins are compliance vessels. For simplicity, we use (1.3.2) instead of 
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-RsOs = Psa- Psv 

Figure 1.6. Equations of the circulation. One equation is shown for each of the 
eight principal elements of the circulation. For additional equations that relate 
these elements to each other, see the text. Each element is characterized by one 
parameter (K =pump coefficient, C =compliance, R =resistance) and two or 
three unknowns (Q = flow, P = pressure, V = volume). Subscript notation is 
s = systemic, p = pulmonary, a = arterial, v = venous, L = left, R = right. 

(1.3.3). That is, we neglect Vd in these vessels. This gives the equations 

V.a CsaPsa' (1.5.3) 

V.v = CsvPsv' (1.5.4) 

Vpa = CpaPpa, (1.5.5) 

Vpv CpvPpv· (1.5.6) 

Third, we assume that the systemic and pulmonary tissues act like 
resistance vessels, so that 

Q. (1.5. 7) 

(1.5.8) 

At this point, we have an equation for each element of the circulation. 
Each equation contains a parameter that characterizes that element. These 
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parameters are the pump coefficients Kn, KL, the resistances R,, Rp, and 
the compliances Csa, C8 v, Cpa, and Cpv· Suppose we are given the values of 
these parameters. Can we use equations (1.5.1) through (1.5.8) to determine 
the flows, pressures, and volumes of the model circulation? The answer to 
this question is negative; we do not yet have enough equations to determine 
the 12 unknowns 

The missing equations refer not to any particular element but to the circu­
lation as a whole and to the way that its elements are connected. (Try to 
discover the missing equations for yourself before reading further.) 

First, it is reasonable to assume that the total blood volume V0 is given. 
This gives the equation 

(1.5.9) 

in which V0 is an additional parameter. 
Next, we assume that the circulation is in a steady state, so that the 

flow into each of the compliance vessels must equal the flow out (why?). It 
follows that Qn = QL = Q8 = Qp, so we can drop the subscripts and just 
refer to all of the flows as Q, the cardiac output. 

With these additional assumptions, we have nine equations for the nine 
unknowns Q, P8a, P8v, Ppa, Ppv, V.a, V.v, Vpa, Vpv· The model is complete. 

Our next task is to solve the equations of the model. That is, we want 
to express each of the unknowns in terms of the parameters. (Try this for 
yourself before reading further.) An efficient plan of attack is as follows: 
First, express all of the pressures in terms of the flow Q. Then use the 
compliance equations to get the volumes in terms of Q. Finally, substitute 
in the equation for the total blood volume and solve for Q. With Q known 
(in terms of parameters only) we can go back and express the pressures 
and then the volumes in terms of parameters. 

Here are the details. From the pump equations, we get the venous 
pressures in terms of Q: 

Q 
Psv = Kn' (1.5.10) 

Q 
Ppv = KL. (1.5.11) 

Substituting this result in the resistance equations, we get the arterial 
pressures in terms of Q: 

Q 
Psa = Kn + R,Q, (1.5.12) 

(1.5.13) 
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Substituting all four pressures into the compliance equations, we obtain 

CsvQ ( V.v KR , 1.5.14) 

Vpv c;: Q, (1.5.15) 

[ Gsa ] 
KR +CsaRs Q, (1.5.16) 

[ Cpa ] Vpa = KL + CpaRp Q. (1.5.17) 

To save writing, we introduce the following combinations of parameters 

T.v Csv/KR, (1.5.18) 

Tpv = Cpv/KL, (1.5.19) 

Tsa = (Gsa/ KR) + CsaRs, (1.5.20) 

Tpa (Cpa/KL) + CpaRp. (1.5.21) 

Then (1.5.14) through (1.5.17) can be summarized by the equations 

Vi = T;Q, i = sv, pv, sa, pa. (1.5.22) 

We are now ready to substitute these expressions in the equations for the 
total blood volume and solve for Q. We get 

(T.a + T.v + Tpa + Tpv )Q = Vo, (1.5.23) 

so 

Q- Vo 
- (Tsa + Tsv + Tpa + Tpv) . 

(1.5.24) 

The solution is completed using the equations Vi = T;Q and P; = Vi/C;. 
We get 

ll; _ T;Vo 
' - (Tsa + Tsv + Tpa + Tpv) ' 

(1.5.25) 

(1.5.26) 

where i =sa, sv, pa, and pv. Thus, we have a formula for each unknown 
in terms of parameters only. 

The quantitative use of these formulae depends on having numerical 
values for the parameters. In particular, we need normal resting values 
for the parameters so that we can use the model to predict the effects of 
parameter changes away from the normal resting state of the circulation. 
It is easy to determine the parameters from data such as are given in 
Table 1.1 and Section 1.2 because each equation of our model (1.5.5-1.5.9) 
contains exactly one of the parameters, so it can be written as a formula 
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Table 1.2. Normal Resting Parameters of the Model Circulation 

Systemic 
R: Rs = 17.5 
C: Gsa= 0.01 

Csv = 1.75 

Right 
K: KR = 2.8 

V: Vo = 5.0 liters 

Pulmonary 
Rp = 1.79 mmHg/(liter/min) 
Cpa = 0.00667 liters/mmHg 
Cpv = 0.08 liters/mmHg 

Left 
KL = 1.12 (liters/min)/mmHg 

for that parameter in terms of the observed pressures, volumes, and flows. 
The results of this procedure are summarized in Table 1.2. 

The procedure that we have just used for identification of parameters 
is based on the assumption that the model is correct. If we improve the 
model, then the best choice of parameters may change. An example of this 
is studied in Exercises 1. 7 and 1.17. 

1.6 Balancing the Two Sides of the Heart and the 
Two Circulations 

The reader has probably noticed that most of the equations of the previous 
section came in pairs. The reason for this is the symmetry of form between 
the right and left heart and the systemic and pulmonary circulations. In 
fact, we can obtain one member of a pair from the other by making the 
subscript interchanges s +-t p and R +-t L (try it and see!). In the few 
equations that stand alone (because they refer to the circulation as a whole) 
these interchanges give us back the same equation as before. 

If the corresponding parameters were quantitatively equal (that is, if we 
had KR = KL, Rs = Rp, etc.), then the two circulations would be quan­
titatively symmetrical with Psa = Ppa, and so on. A glance at Tables 1.1 
and 1.2 shows that this is far from being the case. 

This raises the question of how the two sides of the heart and the two 
circulations are coordinated. What keeps the outputs of the right and left 
hearts equal? What mechanisms control the partition of blood volume be­
tween the systemic and pulmonary circulations? These are vital (and closely 
related) questions. If the left output exceeded the right output by only 10% 
for 1 minute, this would be enough to empty the vessels of the pulmonary 
circulation. 

In our steady-state model of the circulation, the right and left cardiac 
outputs are equal by definition. In a time-dependent version of the model, 
we could see how this equality of output is maintained. Suppose, for ex-
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ample, that KR is suddenly reduced. Temporarily, QR will be less than 
QL, so there will be a net transfer of blood volume away from the pul­
monary circulation and into the systemic circulation. This will raise the 
systemic venous pressure and lower the pulmonary venous pressure. The 
effect of these pressure changes will be to drive the cardiac outputs back 
toward equality. A net rate of transfer of volume will persist until equality 
of output of the two sides has been restored. Then a new equilibrium is 
established with a different partition of the blood volume than before. 

In the steady-state model, we compute only the end result of this process. 
Using (1.5.25) and (1.5.18) through (1.5.21), we see that 

VP Vpa + Vpv 
V. V.a + V.v 

Tpa + Tpv 
Tsa + Tsv 

(Cpa ;L Cpv + CpaRp) / ( Csa ;R Csv + CsaR.) ' ( 1.6.1) 

where Vp is the total pulmonary volume and V. is the total systemic volume. 
Thus, the partition of the blood volume between the two circulations is 
determined by the parameters, and a change in parameters that temporarily 
produces a disparity in output between the two sides of the heart eventually 
results in a volume shift that compensates for the parameter change and 
restores the equality of output. 

The key to the success of this intrinsic control mechanism is the de­
pendence of cardiac output on venous pressure. Suppose instead that the 
cardiac outputs of the two sides of the heart were given and equal. In that 
case Q would be a parameter and we would have to drop equations (1.5.1) 
and (1.5.2). We would have lost two equations but only one unknown, so 
we would be free to specify one more relationship. In fact, we could then 
assume that the pulmonary and systemic volumes (Vp, V,) were separately 
given. This would lead to the equations 

( 1.6.2) 

(1.6.3) 

which would replace (1.5.9), increasing the number of equations by one. 
Thus, we would have the eight equations (1.5.3) through (1.5.8) and (1.6.2) 
and (1.6.3) for the eight unknowns (V;, Pi) with Q as a new parameter. With 
these assumptions the pulmonary and systemic volumes would be arbitrary; 
there would be no mechanism available to hold them in a reasonable re­
lationship to each other. These considerations show the importance of the 
dependence of cardiac output on venous pressure, not only for maintaining 
a balance between the two sides of the heart, but also for establishing a con­
trolled partition of the blood volume between the pulmonary and systemic 
circulations. 
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1. 7 The Need for External Circulatory Control 
Mechanisms 

The arterioles in an exercising muscle dilate, and the systemic resistance Rs 
falls. The cardiac output rises, and the systemic arterial pressure is main­
tained. The increase in cardiac output comes primarily from an increase in 
heart rate while stroke volume remains fairly constant. 

In this section we study the consequences of a change in Rs in our model 
of the uncontrolled circulation. We shall find a predicted response that is 
very different from the observed response described above. In the uncon­
trolled circulation a decrease in R. results in only a modest increase in 
cardiac output. The most noticeable effect is a substantial fall in systemic 
arterial pressure. This shows the need for the external circulatory control 
mechanisms that are outlined in the next section. 

We begin with an obvious but important remark. The effects of a change 
in Rs cannot be predicted solely from the equation of the systemic resis­
tance, even though that is the only equation where Rs appears. If we neglect 
Psv in equation (1.5.7) (an excellent approximation because Psv is about 
2 mmHg, whereas Psa is about 100 mmHg), we get Psa = QR8 • From this 
we might conclude that Psa is proportional to Rs with Q constant or that 
Q is inversely proportional to Rs with Psa constant. Neither conclusion is 
correct, since both Psa and Q vary when Rs changes. The actual effects on 
Psa and Q cannot be predicted without taking all of the other equations 
into account. That is the essence of a system of simultaneous equations. 

In fact, we have already taken these equations into account when we 
solved for the unknowns in terms of the parameters. The formulae that we 
need are 

(1.7.1) 

and 

(1. 7.2) 

where T8 a, etc., are given by (1.5.18) through (1.5.21). 
Using these formulae and the parameter values given in Table 1.2, we can 

find the effects on Q and Psa of reducing R. to 50% of its normal value (while 
leaving the other parameters unchanged). The results are summarized in 
Table 1.3. 

Note that the increase in cardiac output was only about 10% whereas 
the drop in arterial pressure was about 40%. This mechanism of adjusting 
the cardiac output is definitely inadequate to sustain reasonable levels of 
exercise, where cardiac output must be doubled or even tripled and where 
blood supply to nonmuscular tissue must be maintained. 
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Table 1.3. Effect of Changing Systemic Resistance on Cardiac Output and 
Systemic Arterial Pressure in the Uncontrolled Circulation 

Normal R,. = R~ormal/2 Change %Change 
Q 5.6 6.2 +0.6 liters/min +11% 
Psa 100.0 57 -43.0 mmHg -43% 

The results that we have just derived can be summarized using the con­
cept of sensitivity. If Y depends on X, and X changes, then the sensitivity 
of Y to X is defined to be 

O"yx 

= 

~logY logY' -logY 
~logX logX' -logX 
log(Y'/Y) 
log(X'/X)' 

(1.7.3) 

where X' = X + ~X and Y' is the value that Y takes on when X is 
changed to X'. Note that the sensitivity is not influenced by a change of 
units in X or Y. It also makes no difference what base is used for the 
logarithms in these formulae. When the changes in X and Y are small, we 
have approximately 

(1. 7.4) 

which shows that the sensitivity is roughly the ratio of relative (or %) 
changes. If y = axn, then logy = n log X and O"y X = n. In particular, if 
Y is proportional to X, then O"y x = 1. If Y is inversely proportional to X, 
then 11yx = -1. 

From the numbers in Table 1.3, we conclude that O"QR. = -0.15, while 
O"P.aR• = +0.81. It is not a coincidence that 

(1.7.5) 

This follows from the fact that Psa ~ Q R,. as the reader can show by taking 
logarithms and applying the definition of sensitivity. Because of (1.7.5), 
we cannot increase the magnitude of the sensitivity of cardiac output to 
systemic resistance without decreasing the sensitivity of systemic arterial 
pressure to systemic resistance. Any mechanism that accomplishes one will 
automatically accomplish the other. 

1.8 Neural Control: The Baroreceptor Loop 

From the results of the previous section, it appears that it would be a 
good idea to hold Psa constant. In that case, we should have O"PsaRs = 0 
and O"QR. = -1, which would be a tremendous improvement from the 
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standpoint of the circulatory response to exercise. The improvement would 
be twofold. First, aQR. = -1 would mean that the cardiac output would 
double every time the systemic resistance were halved. Second, aP.aR. = 0 
would mean that the systemic arterial pressure (and hence the blood flow 
to the nonexercising tissues and organs) would be maintained. 

In the body, Psa is controlled by a feedback mechanism called the 
baroreceptor loop (see Figure 1. 7, in which an arrow indicates a posi­
tive, or excitatory, influence, and a bar indicates a negative, or inhibitory, 
influence). The elements of the baroreceptor loop are as follows: 

1. The baroreceptors (B) are stretch receptors located in the carotid 
arteries and in the arch of the aorta. The baroreceptors transmit nerve 

EMOTIONAL STIMULI, etc. 

Figure 1.7. The baroreceptor loop. This diagram depicts the qualitative rela­
tionships among the many factors that regulate systemic arterial blood pressure. 
Arrowheads indicate positive influences, whereas bars indicate negative influ­
ences. The symbol x indicates multiplication. SNS = activity of the sympathetic 
nervous system, which increases the heart rate (F), the systemic venous pressure 
(Psv), and the systemic resistance (R.); PNS =activity of the parasympathetic 
nervous system, which slows the heart; B = activity of the baroreceptors, which 
stimulates the parasympathetic nervous system and inhibits the sympathetic ner­
vous system. (Note that these two arms of the autonomic nervous system also 
inhibit each other.) V.tr~ke is the stroke volume, Q is the cardiac output, and Psa 
is the arterial blood pressure. Note that any path through this diagram from Psa 
back to itself involves an odd number of inhibitory influences. Thus, the whole 
system is a negative feedback loop (actually, several negative feedback loops work­
ing in parallel) that tends to stabilize the arterial blood pressure against changes 
such as emotional stimuli or exercise, which are shown here as inputs to the 
system. 
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impulses to the brain stem at a rate that increases with increasing 
arterial pressure (see Chapter 6). 

2. The parasympathetic nervous system (PNS) is excited by activity of 
the baroreceptors. Its effect is to slow the heart rate (F). 

3. The sympathetic nervous system (SNS) is inhibited by activity of the 
baroreceptors. It has several effects on the circulation, including: 

(a) increased heart rate; 
(b) increased venous pressure, and so increased stroke volume; 
(c) increased systemic resistance. 

The loop is closed through the mechanics of the circulation, which implies 
that Q = FV.troke and that Psa = Q R.. 

Tracing any closed loop from Psa back to Psa in Figure 1. 7, we find an 
odd number of inhibitory influences. This means that any changes in Psa 
lead to compensatory changes through the baroreceptor loop. 

We will not present a detailed model of the baroreceptor loop here (see 
Chapter 6, for some further discussion). Instead, we model its overall func­
tion by assuming that the baroreceptor loop adjusts the heart rate F until 
the systemic arterial pressure achieves a target value P*. Note that this 
model ignores the effects of the sympathetic nervous system on venous 
pressure and on systemic resistance. These effects are less important than 
the effect on heart rate in the normal operation of the circulation. 

Thus, we have a new unknown, F, that was previously a parameter and a 
new parameter, Psa = P*, that was previously an unknown. Also, because 
F is no longer a parameter, we have to rewrite (1.5.1) and (1.5.2) in the 
form 

(1.8.1) 

(1.8.2) 

where CR and CL are the diastolic compliance of the right and left hearts 
(see Section 1.4), so that CRPsv is the right stroke volume and CLPpv is 
the left stroke volume. 

This gives us a model of the controlled circulation in which the equations 
are (1.8.1) and (1.8.2) together with (1.5.3) through (1.5.9) and the steady­
state relation QR = Qp = Q. = QL. The unknowns are the same as before 
except that now F replaces Psa· 

Instead of solving these equations directly, we make some approxima­
tions. First, we neglect Psv compared to Psa in the equation of the systemic 
resistance. This represents a 2% error, and it gives us the equation 

QR. = P*. (1.8.3) 

Next, we neglect the pulmonary volumes in comparison with the systemic 
volumes in the equation of the total blood volume. This represents a 10% 
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error, and it gives us 

(1.8.4) 

which can be rewritten as 

(1.8.5) 

We can now determine Q directly from (1.8.3) and Psv directly from (1.8.5): 

Q 
p• 

(1.8.6) 
Rs' 

Psv 
Vo- CsaP* 

(1.8.7) 
Csv 

Substituting these results in the equation of the right heart (1.8.1), we can 
solve for the heart rate 

(1.8.8) 

These results summarize the performance of the controlled circulation. 
We have achieved what we set out to do: Since Psa = P*, which is constant, 
O"p5 .R, = 0. Again, since P* is constant, O"QR, = -1. 

Thus, our model of the controlled circulation responds to changes in Rs 
with (inversely) proportional changes in cardiac output while the arterial 
pressure is maintained. In the model as in life, the mechanism responsible 
for the increased cardiac output is an increase in heart rate, since the venous 
pressure and stroke volume (V.troke = CRPsv) are independent of Rs in the 
model. 

In the uncontrolled circulation the cardiac output depends on all of the 
parameters of the model; in the controlled circulation it depends only on 
P* and Rs. This isolation of cardiac output from extraneous influences is 
just as important as the heightened sensitivity to R5 • We give one example. 
In the uncontrolled circulation, we had O"QVo = 1, which means that the 
cardiac output is proportional to the blood volume (see equation 1.5.24). In 
the controlled circulation, l1QVo = 0, which means that the cardiac output 
is protected against blood loss, for example. From (1.8.8), we see that the 
mechanism of adaptation to blood loss is an increase in heart rate that 
compensates for the decrease in stroke volume. We also see that the model 
breaks down when Vo = CsaP*, which corresponds to complete depletion 
of the systemic venous blood. 

We have shown that the response of the controlled circulation to stress 
is very different from that of the uncontrolled circulation. It is remarkable 
that such dramatic changes in behavior emerge when the only change in 
the mathematical model is to make one parameter into an unknown and 
one unknown into a parameter. 
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1.9 Autoregulation 

Up to this point, we have treated the systemic resistance as a parameter. 
In this section we shall consider the local control of systemic resistance. 
Central control of systemic resistance was mentioned, but not modeled, in 
the previous section (see also Chapter 6). 

There are two phenomena that come under the term autoregulation: 

1. When the pressure-flow relation of a tissue is measured, it often turns 
out that there is a range of pressures in which the flow is relatively 
insensitive to the pressure difference. 

2. At constant pressure difference, the flow through many tissues 
depends on the rate of 0 2 consumption of the tissue. 

In the normal function of the circulation, the second phenomenon is more 
important than the first, since the pressure difference is relatively constant, 
as we have just seen in the previous section. In pathological conditions, the 
first phenomenon may be important for regulating blood flow in the face 
of fluctuating pressures. 

In this section we outline a simple model that accounts for both phe­
nomena through a single mechanism. The model that we shall describe 
is a simplified version of a model proposed by Huntsman, Attinger, and 
N oordergraaf. 

The key hypothesis is that the resistance of a tissue is regulated by the 
venous 0 2 conC(!ntration of the tissue. In general, concentration means 
the amount per unit volume, and its units depend on how the amount is 
measured. In the case of a gas, it is convenient to measure the amount of 
gas in terms of the volume that the gas would occupy under some specified 
conditions of temperature and pressure. In physiology, the most natural 
conditions are atmospheric pressure and body temperature. When this is 
done, the concentration becomes dimensionless (volumefvolume.) 

For example, the concentration of 0 2 in blood, denoted by (02], is the 
number of liters of 02 that are carried in one liter of blood. Oxygen is 
carried in blood bound to hemoglobin, and when all of the 0 2-carrying 
sites in the hemoglobin molecules are occupied, the concentration of 0 2 in 
blood is ~. Coincidentally, this is the same as the concentration of 0 2 in 
the atmosphere itself. Under normal conditions, the hemoglobin becomes 
saturated as it passes through the lungs, so that the arterial concentration 
(02]a = ~-The 02 concentration of arterial blood is constant for all of the 
tissues of the body, but it may vary under conditions of high altitude or 
anemia. In the former case, the hemoglobin may fail to be saturated in the 
lung. In the latter case, the concentration of hemoglobin in blood is lower 
than normal. In both cases, [02]a is reduced, but this reduction is felt by 
all tissues of the body. 
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The venous Oz concentration, [02]v, is different in the different tissues 
of the body. Let M (metabolic rate) stand for the rate of 0 2 consumption 
of a tissue (M has units of liters/minute). Also, let Q be the blood flow to 
the tissue in question. The rate at which 0 2 is delivered to the tissue in the 
arterial blood is Q[02]a, the units of which are (liters of blood/minute) x 
(liters of 0 2 /liter of blood). Similarly, the rate at which 0 2 leaves the tissue 
in its venous blood is Q[02]v· If the tissue is in a steady state, the difference 
must be accounted for by the metabolic rate of the tissue. This gives the 
equation 

(1.9.1) 

which is called Fick 's principle. Thus, 

(1.9.2) 

This formula shows that [02 ]v may serve as an index of the adequacy of 
the blood supply in relation to the metabolic rate of the tissues. When the 
blood supply is just barely sufficient to sustain the metabolic rate, then 

Q = Q* = M/[02]a (this defines Q*), (1.9.3) 

and we get [02Jv = 0. As Q is raised above Q*, [Oz]v rises, and finally, 
[Oz]v -+[Oz]a as Q -+ oo. This shows why it might be reasonable to use 
[Oz]v to regulate the resistance of a tissue to blood flow. 

A problem with this hypothesis is that resistance is regulated on the arte­
rial side of the tissue, not on the venous side. The venous 0 2 concentration 
is determined by the tissue 0 2 concentration, however, and the arterioles 
run through the tissue and may therefore be influenced by the tissue 0 2 
concentration. 

Suppose, for example, that 

(1.9.4) 

where 

R=P/Q (1.9.5) 

is the resistance of the tissue to blood flow, P is the arteriovenous pressure 
difference (P = Psa- Psv ), and Ro is the constant of proportionality that 
relates the resistance of the tissue to the venous 0 2 concentration. 

Equation (1.9.4) simply asserts that tissue resistance to blood flow is 
proportional to venous 0 2 concentration. This is the simplest of a class of 
models in which tissue resistance is regulated by venous 0 2 concentration. 

To study the consequences of this simple hypothesis, we substitute (1.9.2) 
and (1.9.5) into (1.9.4) to obtain the pressure-flow relation of a tissue in 
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Figure 1.8. Pressure-flow relation of a tissue with and without autoregulation. 
P = Psa - Psv = pressure difference driving flow through the tissue, and Q is the 
resulting flow. The dashed line shows the unregulated relationship characterized 
by a constant resistance R, and the solid line shows the autoregulated response, 
in which the resistance is proportional to the venous oxygen c:oncentration [02]v, 
with Ro as the constant of proportionality. Note that the unregulated relationship 
includes the origin (Q = 0 when P = 0), but that in the autoregulated case there 
is still nonzero flow (Q = Q•) even when (P = 0). 

which resistance is regulated in this way. The result is 

M p 

[02]a + Ro[02]a Q = (1.9.6) 

Q• p 
+ Ro[02]a' 

(1.9. 7) 

where Q* = M/(02]a· This result is plotted in Figure 1.8. 
The behavior of the model tissue is summarized by the following 

statements, which the reader should be able to verify: 

1. The sensitivity of flow to pressure (uQP) is less when R = R0 [02]v 
than when R = constant. 

2. The tissue always receives at least the minimum flow Q* required 
to sustain its metabolic rate. (Think about how this works. When 
P-+ 0, why doesn't Q-+ 0 in the model? What happens toR and 
[02]v ?) 

3. At constant P, if M changes, then t:J.Q = t:J.Q* = tl.M/[02]a· This 
means that the change in blood flow is just what is needed to support 
the extra 0 2 consumption. 
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4. At constant P, if M increases, then R automatically decreases. 
(Plot Rasa function of M with P, [02]a, and Ro constant.) 

5. If [02]a changes (with P and Ro constant), then Q automatically 
adjusts in such a way that Q[02]a = constant. Therefore, the rate of 
02 supply to all of the tissues is the same as it was before the change 
in [02]a-

ln summary, the simple device of setting R = Ro[02]v (instead of R = 
constant) makes the blood supply to a tissue less sensitive to pressure 
changes and more responsive to the needs of the tissue. 

1.10 Changes in the Circulation Occurring at Birth 

The circulation forms a simple loop after birth. Before birth, however, the 
configuration of the circulation is complicated by additional connections. 
One of these is a vessel called the ductus arteriosus, which connects the 
pulmonary and systemic arteries near the heart. Another is an opening in 
the wall that separates the right and left atria. This opening, called the 
foramen ovale, is guarded by a flap of tissue that acts as a valve to ensure 
that blood flow through the foramen always goes from right to left. 

The function of these extra connections is to shunt blood away from the 
lungs, which are collapsed before birth and which therefore present high 
resistance to blood flow. 

In this section we present a simple model of the fetal circulation (the cir­
culation before birth), and we shall use this model to explain the sequence 
of changes (initiated by the first breath) that close the shunts and establish 
the single-loop configuration of the circulation that persists into adult life. 

The model is shown in Figure 1.9. The shunt flows are the ductus flow 
Qd and the foramen flow Qr. If these are both zero, then the model takes on 
the configuration of a simple loop in which blood flows through the right 
heart; the pulmonary arteries, tissues, and veins; the left heart; and the 
systemic arteries, tissues, and veins. 

Note that the flow through the ductus arteriosus is not always in the 
direction indicated by the arrow in Figure 1.9. The arrow points in the 
direction of the flow that we have chosen to call positive, which is also the 
normal direction of flow during fetal life. After birth but before the closure 
of the ductus arteriosus, however, the flow through the ductus is in the 
opposite direction. The reasons for this sudden reversal at birth will be 
explained below. The two situations are easily accommodated by a single 
system of equations if we consider the reverse flow through the ductus 
as being negative. Thus, Qd > 0 means that the flow is in the direction 
defined by the arrow in Figure 1.9, whereas Qd < 0 means that flow is in 
the opposite direction. 




