
Find minimum of unconstrained multivariable function using
derivative-free method

example

example

example

example

collapse all

fminsearch

Syntax

x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval]
= fminsearch(___)
[x,fval,exitflag]
= fminsearch(___)
[x,fval,exitflag,output]
= fminsearch(___)

Description
Nonlinear programming solver. Searches for the minimum of a problem specified
by

f(x) is a function that returns a scalar, and
x is a vector or a matrix; see Matrix Arguments.

x = fminsearch(fun,x0) starts
at the point x0 and attempts to find a local minimum x of
the function
described in fun.

x = fminsearch(fun,x0,options) minimizes
with the optimization options specified in the structure
options.
Use optimset to set these options.

x = fminsearch(problem) finds
the minimum for problem, a structure described in problem.

[x,fval]
= fminsearch(___), for any previous input syntax,
returns in fval the value of the objective
function fun at
the solution x.

[x,fval,exitflag]
= fminsearch(___) additionally returns a value exitflag that
describes the exit
condition.

[x,fval,exitflag,output]
= fminsearch(___) additionally returns a structure output with
information about the optimization process.

Examples

min
x

f (x)

Minimize Rosenbrock's Function


Minimize Rosenbrock's function, a notoriously difficult optimization
problem for many algorithms:

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

x0 = [-1.2,1];

x = fminsearch(fun,x0)

x = 1×2

 1.0000 1.0000

Try This Example

View MATLAB Commandf (x) = 100(x2 − x2
1
)2 + (1 − x1)

2.

https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9slt3-2
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9spz_
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9squ9-1
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9t2fh-1
javascript:void(0);
https://kr.mathworks.com/help/optim/ug/matrix-arguments.html
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9slsv-problem
matlab:openExample('matlab/MinimizeRosenbrocksFunctionExample')

Monitor Optimization Process


Set options to monitor the process as fminsearch attempts to
locate a minimum.

Set options to plot the objective function at each iteration.

options = optimset('PlotFcns',@optimplotfval);

Set the objective function to Rosenbrock's function,

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

x0 = [-1.2,1];

x = fminsearch(fun,x0,options)

x = 1×2

 1.0000 1.0000

Try This Example

View MATLAB Command

f (x) = 100(x2 − x2
1
)2 + (1 − x1)

2.

Minimize a Function Specified by a File


Minimize an objective function whose values are given by executing
a file. A function file must accept a real vector x and return a real
scalar that is the value of the objective function.

Copy the following code and include it as a file named objectivefcn1.m on your MATLAB® path.

View MATLAB Command

matlab:openExample('matlab/MonitorTheOptimizationProcessExample')
matlab:openExample('matlab/MinimizeAFunctionThatIsSpecifiedByAFileExample')

function f = objectivefcn1(x)

f = 0;

for k = -10:10

 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));

end

Start at x0 = [0.25,-0.25] and search for a minimum of objectivefcn.

x0 = [0.25,-0.25];

x = fminsearch(@objectivefcn1,x0)

x =

 -0.1696 -0.5086

Minimize with Extra Parameters


Sometimes your objective function has extra parameters. These
parameters are not variables to optimize, they are fixed values
during the optimization. For example, suppose that you have a
parameter a in the Rosenbrock-type function

This function has a minimum value of 0 at , . If, for example, , you can include the parameter
in your objective function by creating an anonymous function.

Create the objective function with its extra parameters as extra arguments.

f = @(x,a)100*(x(2) - x(1)^2)^2 + (a-x(1))^2;

Put the parameter in your MATLAB® workspace.

a = 3;

Create an anonymous function of x alone that includes the workspace value of the parameter.

fun = @(x)f(x,a);

Solve the problem starting at x0 = [-1,1.9].

x0 = [-1,1.9];

x = fminsearch(fun,x0)

x = 1×2

 3.0000 9.0000

For more information about using extra parameters in your objective function, see Parameterizing Functions.

Try This Example

View MATLAB Command

f (x, a) = 100(x2 − x2
1
)2 + (a − x1)

2.

x1 = a x2 = a2 a = 3

Find Minimum Location and Value


Find both the location and value of a minimum of an objective
function using fminsearch. Try This Example

https://kr.mathworks.com/help/matlab/math/parameterizing-functions.html
matlab:openExample('matlab/MinimizeWithExtraParametersExample')

Write an anonymous objective function for a three-variable problem.

x0 = [1,2,3];

fun = @(x)-norm(x+x0)^2*exp(-norm(x-x0)^2 + sum(x));

Find the minimum of fun starting at x0. Find the value of the minimum as well.

[x,fval] = fminsearch(fun,x0)

x = 1×3

 1.5359 2.5645 3.5932

fval = -5.9565e+04

View MATLAB Command

Inspect Optimization Process


Inspect the results of an optimization, both while it is running and
after it finishes.

Set options to provide iterative display, which gives information on the optimization as the solver runs. Also, set a
plot function to show the objective function value as the solver runs.

options = optimset('Display','iter','PlotFcns',@optimplotfval);

Set an objective function and start point.

function f = objectivefcn1(x)

f = 0;

for k = -10:10

 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));

end

Include the code for objectivefcn1 as a file on your MATLAB® path.

x0 = [0.25,-0.25];

fun = @objectivefcn1;

Obtain all solver outputs. Use these outputs to inspect the results after the solver finishes.

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

 Iteration Func-count min f(x) Procedure

 0 1 -6.70447

 1 3 -6.89837 initial simplex

 2 5 -7.34101 expand

 3 7 -7.91894 expand

 4 9 -9.07939 expand

 5 11 -10.5047 expand

 6 13 -12.4957 expand

 7 15 -12.6957 reflect

 8 17 -12.8052 contract outside

 9 19 -12.8052 contract inside

 10 21 -13.0189 expand

 11 23 -13.0189 contract inside

 12 25 -13.0374 reflect

 13 27 -13.122 reflect

View MATLAB Command

matlab:openExample('matlab/FindMinimumLocationAndValueExample')
matlab:openExample('matlab/InspectTheOptimizationProcessExample')

 14 28 -13.122 reflect

 15 29 -13.122 reflect

 16 31 -13.122 contract outside

 17 33 -13.1279 contract inside

 18 35 -13.1279 contract inside

 19 37 -13.1296 contract inside

 20 39 -13.1301 contract inside

 21 41 -13.1305 reflect

 22 43 -13.1306 contract inside

 23 45 -13.1309 contract inside

 24 47 -13.1309 contract inside

 25 49 -13.131 reflect

 26 51 -13.131 contract inside

 27 53 -13.131 contract inside

 28 55 -13.131 contract inside

 29 57 -13.131 contract outside

 30 59 -13.131 contract inside

 31 61 -13.131 contract inside

 32 63 -13.131 contract inside

 33 65 -13.131 contract outside

 34 67 -13.131 contract inside

 35 69 -13.131 contract inside

Optimization terminated:

 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04

 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

x =

 -0.1696 -0.5086

fval =

 -13.1310

exitflag =

 1

output =

 struct with fields:

 iterations: 35

 funcCount: 69

 algorithm: 'Nelder-Mead simplex direct search'

 message: 'Optimization terminated:...'

collapse allInput Arguments

The value of exitflag is 1, meaning fminsearch likely converged to a local minimum.

The output structure shows the number of iterations. The iterative display and the plot show this information as
well. The output structure also shows the number of function evaluations, which the iterative display shows, but
the chosen plot function does not.

fun — Function to minimize

function handle | function name

Function to minimize, specified as a function handle or function
name. fun is a function that accepts a vector or
array x and returns a real scalar f (the
objective function evaluated at x).

fminsearch passes x to your objective function in the shape of the x0 argument. For example, if x0 is a 5-by-3
array, then fminsearch passes x to fun as a 5-by-3 array.

Specify fun as a function handle for a file:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such
as

function f = myfun(x)

f = ... % Compute function value at x

You can also specify fun as a function handle
for an anonymous function:

x = fminsearch(@(x)norm(x)^2,x0);

Example: fun = @(x)-x*exp(-3*x)

Data Types: char | function_handle | string

®

javascript:void(0);

x0 — Initial point

real vector | real array

Initial point, specified as a real vector or real array. Solvers use the number of elements in
x0 and the size of x0 to
determine the number
and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

options — Optimization options

structure such as optimset returns

•

•

•

•

•

•

•

Optimization options, specified as a structure such as optimset returns.
You can use optimset to set or
change
the values of these fields in the options structure. See Optimization Options Reference for detailed information.

Display Level of display (see Iterative Display):
'notify' (default) displays output
only if the function does not converge.

'final' displays just the final
output.

'off' or 'none' displays
no output.

'iter' displays output at each
iteration.

FunValCheck Check whether objective function values are valid. 'on' displays
an error when the
objective function returns a value that is complex or NaN.
The default 'off'
displays no error.

MaxFunEvals Maximum number of function evaluations allowed, a positive
integer. The default is
200*numberOfVariables.
See Tolerances and Stopping Criteria and Iterations and
Function Counts.

MaxIter Maximum number of iterations allowed, a positive integer.
The default value is
200*numberOfVariables. See Tolerances and Stopping Criteria and Iterations and
Function Counts.

OutputFcn Specify one or more user-defined functions that an optimization
function calls at
each iteration, either as a function handle or as
a cell array of function handles. The
default is none ([]).
See Output Function and Plot Function Syntax.

PlotFcns Plots various measures of progress while the algorithm executes. Select from
predefined
plots or write your own. Pass a function handle or a cell array of
function handles. The
default is none ([]):

@optimplotx plots the current point.

@optimplotfunccount plots the function count.

@optimplotfval plots the function value.

Custom plot functions use the same syntax as output functions. See Output
Functions for Optimization Toolbox™ and
Output Function and Plot Function
Syntax.

TolFun Termination tolerance on the function value, a positive
scalar. The default is 1e-4.
See Tolerances and Stopping Criteria. Unlike
other solvers, fminsearch stops
when it satisfies both TolFun and TolX.

TolX Termination tolerance on x, a positive
scalar. The default value is 1e-4. See
Tolerances and Stopping Criteria. Unlike
other solvers, fminsearch stops when it
satisfies both TolFun and TolX.

Example: options = optimset('Display','iter')

Data Types: struct

https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/optimization-options-reference.html
https://kr.mathworks.com/help/optim/ug/iterative-display.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/iterations-and-function-counts.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/iterations-and-function-counts.html
https://kr.mathworks.com/help/optim/ug/output-function.html
https://kr.mathworks.com/help/optim/ug/output-functions.html
https://kr.mathworks.com/help/optim/ug/output-function.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html

collapse allOutput Arguments

problem — Problem structure

structure

Problem structure, specified as a structure with the following
fields.

Field Name Entry

objective Objective function

x0 Initial point for x

solver 'fminsearch'

options Options structure such as returned by optimset

Data Types: struct

x — Solution

real vector | real array

Solution, returned as a real vector or real array. The size
of x is the same as the size of x0.
Typically, x is a local
solution to the problem
when exitflag is positive. For information on
the quality of the solution, see When the
Solver Succeeds.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real
number. Generally, fval = fun(x).

exitflag — Reason fminsearch stopped

integer

Reason fminsearch stopped, returned as an
integer.

1 The function converged to a solution x.

0 Number of iterations exceeded options.MaxIter or
number of function
evaluations exceeded options.MaxFunEvals.

-1 The algorithm was terminated by the output function.

output — Information about the optimization process

structure

Information about the optimization process, returned as a structure
with fields:

iterations Number of iterations

funcCount Number of function evaluations

algorithm 'Nelder-Mead simplex direct search'

javascript:void(0);
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/when-the-solver-succeeds.html

•

•

•

•



Tips
fminsearch only minimizes over
the real numbers, that is, x must only consist
of real numbers and f(x) must
only
return real numbers. When x has complex values,
split x into real and imaginary parts.

Use fminsearch to solve nondifferentiable
problems or problems with discontinuities, particularly if no
discontinuity
occurs near the solution.

fminsearch is generally less
efficient than fminunc, especially
for problems of dimension greater than two.
However, when the problem
is discontinuous, fminsearch can be more robust
than fminunc.

fminsearch is not the preferred
solver for problems that are sums of squares, that is, of the form

Instead, use the lsqnonlin function,
which has been optimized for problems of this form.

Algorithms
fminsearch uses the simplex search method
of Lagarias et al. [1]. This is a direct search method that does not use
numerical
or analytic gradients as in fminunc.
The algorithm is described in detail in fminsearch Algorithm. The
algorithm is not guaranteed to
converge to a local minimum.

Alternative Functionality

App

The Optimize Live Editor task provides a visual interface for fminsearch.

References
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright,
and P. E. Wright. “Convergence Properties of the Nelder-Mead
Simplex
Method in Low Dimensions.” SIAM Journal
of Optimization. Vol. 9, Number 1, 1998, pp. 112–147.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also
fminbnd | fminunc | optimset | Optimize

Topics

Create Function Handle

Anonymous Functions

Introduced before R2006a

message Exit message

min
x

 f (x)2
2

= min
x

(
f1(x)2 + f2(x)2 + ... + fn(x)2

)

https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/lsqnonlin.html
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9sp4b-1
https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/fminsearch-algorithm.html
https://kr.mathworks.com/help/optim/ug/optimize.html
https://kr.mathworks.com/help/optim/ug/fminbnd.html
https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/optimize.html
https://kr.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://kr.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html

