
Find minimum of unconstrained multivariable function using derivative-free method

example

example

example

example

collapse all

fminsearch

Syntax

x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval] = fminsearch(___)
[x,fval,exitflag] = fminsearch(___)
[x,fval,exitflag,output] = fminsearch(___)

Description
Nonlinear programming solver. Searches for the minimum of a problem speci�ed by

f(x) is a function that returns a scalar, and x is a vector or a matrix; see Matrix Arguments.

x = fminsearch(fun,x0) starts at the point x0 and attempts to �nd a local minimum x of the function
described in fun.

x = fminsearch(fun,x0,options) minimizes with the optimization options speci�ed in the structure
options. Use optimset to set these options.

x = fminsearch(problem) �nds the minimum for problem, a structure described in problem.

[x,fval] = fminsearch(___), for any previous input syntax, returns in fval the value of the objective
function fun at the solution x.

[x,fval,exitflag] = fminsearch(___) additionally returns a value exitflag that describes the exit
condition.

[x,fval,exitflag,output] = fminsearch(___) additionally returns a structure output with
information about the optimization process.

Examples

min
x

f (x)

Minimize Rosenbrock's Function

Minimize Rosenbrock's function, a notoriously di�cult optimization
problem for many algorithms:

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0)

x = 1×2

 1.0000 1.0000

Try This Example

View MATLAB Commandf (x) = 100(x2 − x2
1
)2 + (1 − x1)

2.

https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9slt3-2
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9spz_
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9squ9-1
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9t2fh-1
javascript:void(0);
https://kr.mathworks.com/help/optim/ug/matrix-arguments.html
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9slsv-problem
matlab:openExample('matlab/MinimizeRosenbrocksFunctionExample')

Monitor Optimization Process

Set options to monitor the process as fminsearch attempts to
locate a minimum.

Set options to plot the objective function at each iteration.

options = optimset('PlotFcns',@optimplotfval);

Set the objective function to Rosenbrock's function,

The function is minimized at the point x = [1,1] with minimum value 0.

Set the start point to x0 = [-1.2,1] and minimize Rosenbrock's function using fminsearch.

fun = @(x)100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
x0 = [-1.2,1];
x = fminsearch(fun,x0,options)

x = 1×2

 1.0000 1.0000

Try This Example

View MATLAB Command

f (x) = 100(x2 − x2
1
)2 + (1 − x1)

2.

Minimize a Function Speci�ed by a File

Minimize an objective function whose values are given by executing
a �le. A function �le must accept a real vector x and return a real
scalar that is the value of the objective function.

Copy the following code and include it as a �le named objectivefcn1.m on your MATLAB® path.

View MATLAB Command

matlab:openExample('matlab/MonitorTheOptimizationProcessExample')
matlab:openExample('matlab/MinimizeAFunctionThatIsSpecifiedByAFileExample')

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Start at x0 = [0.25,-0.25] and search for a minimum of objectivefcn.

x0 = [0.25,-0.25];
x = fminsearch(@objectivefcn1,x0)

x =

 -0.1696 -0.5086

Minimize with Extra Parameters

Sometimes your objective function has extra parameters. These
parameters are not variables to optimize, they are �xed values
during the optimization. For example, suppose that you have a
parameter a in the Rosenbrock-type function

This function has a minimum value of 0 at , . If, for example, , you can include the parameter
in your objective function by creating an anonymous function.

Create the objective function with its extra parameters as extra arguments.

f = @(x,a)100*(x(2) - x(1)^2)^2 + (a-x(1))^2;

Put the parameter in your MATLAB® workspace.

a = 3;

Create an anonymous function of x alone that includes the workspace value of the parameter.

fun = @(x)f(x,a);

Solve the problem starting at x0 = [-1,1.9].

x0 = [-1,1.9];
x = fminsearch(fun,x0)

x = 1×2

 3.0000 9.0000

For more information about using extra parameters in your objective function, see Parameterizing Functions.

Try This Example

View MATLAB Command

f (x, a) = 100(x2 − x2
1
)2 + (a − x1)

2.

x1 = a x2 = a2 a = 3

Find Minimum Location and Value

Find both the location and value of a minimum of an objective
function using fminsearch. Try This Example

https://kr.mathworks.com/help/matlab/math/parameterizing-functions.html
matlab:openExample('matlab/MinimizeWithExtraParametersExample')

Write an anonymous objective function for a three-variable problem.

x0 = [1,2,3];
fun = @(x)-norm(x+x0)^2*exp(-norm(x-x0)^2 + sum(x));

Find the minimum of fun starting at x0. Find the value of the minimum as well.

[x,fval] = fminsearch(fun,x0)

x = 1×3

 1.5359 2.5645 3.5932

fval = -5.9565e+04

View MATLAB Command

Inspect Optimization Process

Inspect the results of an optimization, both while it is running and
after it �nishes.

Set options to provide iterative display, which gives information on the optimization as the solver runs. Also, set a
plot function to show the objective function value as the solver runs.

options = optimset('Display','iter','PlotFcns',@optimplotfval);

Set an objective function and start point.

function f = objectivefcn1(x)
f = 0;
for k = -10:10
 f = f + exp(-(x(1)-x(2))^2 - 2*x(1)^2)*cos(x(2))*sin(2*x(2));
end

Include the code for objectivefcn1 as a �le on your MATLAB® path.

x0 = [0.25,-0.25];
fun = @objectivefcn1;

Obtain all solver outputs. Use these outputs to inspect the results after the solver �nishes.

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

 Iteration Func-count min f(x) Procedure
 0 1 -6.70447
 1 3 -6.89837 initial simplex
 2 5 -7.34101 expand
 3 7 -7.91894 expand
 4 9 -9.07939 expand
 5 11 -10.5047 expand
 6 13 -12.4957 expand
 7 15 -12.6957 reflect
 8 17 -12.8052 contract outside
 9 19 -12.8052 contract inside
 10 21 -13.0189 expand
 11 23 -13.0189 contract inside
 12 25 -13.0374 reflect
 13 27 -13.122 reflect

View MATLAB Command

matlab:openExample('matlab/FindMinimumLocationAndValueExample')
matlab:openExample('matlab/InspectTheOptimizationProcessExample')

 14 28 -13.122 reflect
 15 29 -13.122 reflect
 16 31 -13.122 contract outside
 17 33 -13.1279 contract inside
 18 35 -13.1279 contract inside
 19 37 -13.1296 contract inside
 20 39 -13.1301 contract inside
 21 41 -13.1305 reflect
 22 43 -13.1306 contract inside
 23 45 -13.1309 contract inside
 24 47 -13.1309 contract inside
 25 49 -13.131 reflect
 26 51 -13.131 contract inside
 27 53 -13.131 contract inside
 28 55 -13.131 contract inside
 29 57 -13.131 contract outside
 30 59 -13.131 contract inside
 31 61 -13.131 contract inside
 32 63 -13.131 contract inside
 33 65 -13.131 contract outside
 34 67 -13.131 contract inside
 35 69 -13.131 contract inside

Optimization terminated:
 the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
 and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-04

x =

 -0.1696 -0.5086

fval =

 -13.1310

exitflag =

 1

output =

 struct with fields:

 iterations: 35
 funcCount: 69
 algorithm: 'Nelder-Mead simplex direct search'
 message: 'Optimization terminated:...'

collapse allInput Arguments

The value of exitflag is 1, meaning fminsearch likely converged to a local minimum.

The output structure shows the number of iterations. The iterative display and the plot show this information as
well. The output structure also shows the number of function evaluations, which the iterative display shows, but
the chosen plot function does not.

fun — Function to minimize
function handle | function name

Function to minimize, speci�ed as a function handle or function name. fun is a function that accepts a vector or
array x and returns a real scalar f (the objective function evaluated at x).

fminsearch passes x to your objective function in the shape of the x0 argument. For example, if x0 is a 5-by-3
array, then fminsearch passes x to fun as a 5-by-3 array.

Specify fun as a function handle for a �le:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

You can also specify fun as a function handle for an anonymous function:

x = fminsearch(@(x)norm(x)^2,x0);

Example: fun = @(x)-x*exp(-3*x)

Data Types: char | function_handle | string

®

javascript:void(0);

x0 — Initial point
real vector | real array

Initial point, speci�ed as a real vector or real array. Solvers use the number of elements in x0 and the size of x0 to
determine the number and size of variables that fun accepts.

Example: x0 = [1,2,3,4]

Data Types: double

options — Optimization options
structure such as optimset returns

•

•

•

•

•

•

•

Optimization options, speci�ed as a structure such as optimset returns. You can use optimset to set or change
the values of these �elds in the options structure. See Optimization Options Reference for detailed information.

Display Level of display (see Iterative Display):
'notify' (default) displays output only if the function does not converge.

'final' displays just the �nal output.

'off' or 'none' displays no output.

'iter' displays output at each iteration.

FunValCheck Check whether objective function values are valid. 'on' displays an error when the
objective function returns a value that is complex or NaN. The default 'off'
displays no error.

MaxFunEvals Maximum number of function evaluations allowed, a positive integer. The default is
200*numberOfVariables. See Tolerances and Stopping Criteria and Iterations and
Function Counts.

MaxIter Maximum number of iterations allowed, a positive integer. The default value is
200*numberOfVariables. See Tolerances and Stopping Criteria and Iterations and
Function Counts.

OutputFcn Specify one or more user-de�ned functions that an optimization function calls at
each iteration, either as a function handle or as a cell array of function handles. The
default is none ([]). See Output Function and Plot Function Syntax.

PlotFcns Plots various measures of progress while the algorithm executes. Select from
prede�ned plots or write your own. Pass a function handle or a cell array of
function handles. The default is none ([]):

@optimplotx plots the current point.

@optimplotfunccount plots the function count.

@optimplotfval plots the function value.

Custom plot functions use the same syntax as output functions. See Output
Functions for Optimization Toolbox™ and Output Function and Plot Function
Syntax.

TolFun Termination tolerance on the function value, a positive scalar. The default is 1e-4.
See Tolerances and Stopping Criteria. Unlike other solvers, fminsearch stops
when it satis�es both TolFun and TolX.

TolX Termination tolerance on x, a positive scalar. The default value is 1e-4. See
Tolerances and Stopping Criteria. Unlike other solvers, fminsearch stops when it
satis�es both TolFun and TolX.

Example: options = optimset('Display','iter')

Data Types: struct

https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/optimization-options-reference.html
https://kr.mathworks.com/help/optim/ug/iterative-display.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/iterations-and-function-counts.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/iterations-and-function-counts.html
https://kr.mathworks.com/help/optim/ug/output-function.html
https://kr.mathworks.com/help/optim/ug/output-functions.html
https://kr.mathworks.com/help/optim/ug/output-function.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html
https://kr.mathworks.com/help/optim/ug/tolerances-and-stopping-criteria.html

collapse allOutput Arguments

problem — Problem structure
structure

Problem structure, speci�ed as a structure with the following �elds.

Field Name Entry

objective Objective function

x0 Initial point for x

solver 'fminsearch'

options Options structure such as returned by optimset

Data Types: struct

x — Solution
real vector | real array

Solution, returned as a real vector or real array. The size of x is the same as the size of x0. Typically, x is a local
solution to the problem when exitflag is positive. For information on the quality of the solution, see When the
Solver Succeeds.

fval — Objective function value at solution
real number

Objective function value at the solution, returned as a real number. Generally, fval = fun(x).

exitflag — Reason fminsearch stopped
integer

Reason fminsearch stopped, returned as an integer.

1 The function converged to a solution x.

0 Number of iterations exceeded options.MaxIter or number of function
evaluations exceeded options.MaxFunEvals.

-1 The algorithm was terminated by the output function.

output — Information about the optimization process
structure

Information about the optimization process, returned as a structure with �elds:

iterations Number of iterations

funcCount Number of function evaluations

algorithm 'Nelder-Mead simplex direct search'

javascript:void(0);
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/when-the-solver-succeeds.html

•

•

•

•

Tips
fminsearch only minimizes over the real numbers, that is, x must only consist of real numbers and f(x) must only
return real numbers. When x has complex values, split x into real and imaginary parts.

Use fminsearch to solve nondifferentiable problems or problems with discontinuities, particularly if no
discontinuity occurs near the solution.

fminsearch is generally less e�cient than fminunc, especially for problems of dimension greater than two.
However, when the problem is discontinuous, fminsearch can be more robust than fminunc.

fminsearch is not the preferred solver for problems that are sums of squares, that is, of the form

Instead, use the lsqnonlin function, which has been optimized for problems of this form.

Algorithms
fminsearch uses the simplex search method of Lagarias et al. [1]. This is a direct search method that does not use
numerical or analytic gradients as in fminunc. The algorithm is described in detail in fminsearch Algorithm. The
algorithm is not guaranteed to converge to a local minimum.

Alternative Functionality

App

The Optimize Live Editor task provides a visual interface for fminsearch.

References
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. “Convergence Properties of the Nelder-Mead Simplex
Method in Low Dimensions.” SIAM Journal of Optimization. Vol. 9, Number 1, 1998, pp. 112–147.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fminbnd | fminunc | optimset | Optimize

Topics

Create Function Handle

Anonymous Functions

Introduced before R2006a

message Exit message

min
x

 f (x)2
2

= min
x

(
f1(x)2 + f2(x)2 + ... + fn(x)2

)

https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/lsqnonlin.html
https://kr.mathworks.com/help/optim/ug/fminsearch.html#bu9sp4b-1
https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/fminsearch-algorithm.html
https://kr.mathworks.com/help/optim/ug/optimize.html
https://kr.mathworks.com/help/optim/ug/fminbnd.html
https://kr.mathworks.com/help/optim/ug/fminunc.html
https://kr.mathworks.com/help/optim/ug/optimset.html
https://kr.mathworks.com/help/optim/ug/optimize.html
https://kr.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://kr.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html

