
Project 1: One Compartment Modeling 

 

- The most commonly employed approach to the pharmacokinetics characterization 

of a drug 

- Represent the body as a system of compartments 

- Compartments usually have no physiological or anatomic reality 

- Assume that the rate of transfer between compartments and the rate of drug 

elimination from compartments follows first order or linear kinetics 

- One compartment = the body = a single, kinetically homogeneous unit 

- Assume that the rate of change of drug concentration in plasma reflects 

quantitatively the change in drug concentrations through the body 

- The elimination of most drugs in humans and animals following therapeutic or 

nontoxic dose can be characterized as an apparent first-order process (i.e., the rate 

of elimination of drug from the body at any time is proportional to the amount of 

drug in the body at that time.) 

 

1. Intravenous Injection (drug concentration in the plasma) 

- Following rapid intravenous injection of a drug that distributes in the body 

according to a one-compartment model and is eliminated by apparent first-order 

kinetics.  

- The rate of loss is given by kxdtdx /  

where x = the amount of drug in the body, k=the apparent first-order elimination rate 

constant for the drug, (-) = the negative sign indicates that drug is being lost from the 

body. 

- By the Laplace transform 

XkXXs  0  

)/( ksXX  0  

ktexx  0  

- Taking the natural logarithm of both sides gives 

ktxx  0lnln  

Since aa lnlog303.2   
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 If the volume of the compartment is known 

  VCX   or VXC /  

where C=drug concentration 
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0C  = the drug concentration in plasma immediately after injection. 

 

2. Simulation 

- You know all the details of a given model or system 

- Does not require data 

- Allows specific testing of a known (or unknown) system 

- Example: Monoexponential 

Let’s say we performed a drug study and determined that the time course of a given drug 

following a bolus injection can be described by the following simple exponential equation. 

ktey  75  

Let’s also say that we know for healthy subjects, k is equal to 0.05. 

 

(Experiment 1)  

Plot y(t) for t is from 0 to 120 minutes with k=0.05 at every 0.5min. Label x and y-axis. 

 

Now suppose we would like to know how the time course for this drug would change if the 

rate of disappearance were to change 2-fold. The change in k might reflect changes due to 

renal dysfunction or changes in the degradation of the drug in vivo. We would use 

simulation to calculate the new time course without having to do a new experiment. 

 

(Experiment 2) 

Plot t vs. y(t) for k=0.05, 0.025, and 0.10. Use different line formats. 

 

 

 

 

 

 



3. Parameter Identification 

i. Collect data 

ii. Test a hypothesized model 

iii. Don’t know details of the model or system 

 

Let’s take our example from above. We took our drug and performed experiments in which 

we injected some known amount into an experimental subject and measured the 

concentration over time. Our data might look like this… 

 

How do we determine the value of k? We can use the method of least squares to find k 

from the data we have collected 

 

4. Least Squares Method 

Let’s use the linear regression as an example. We want to draw a straight-line which best 

“fits” or represents some data we have collected. What determines the best line through the 

data? The best line is that which comes as close as to the data as possible, while having the 

data randomly distributed about the time. 

 

The least squares method works by minimizing the distance between our measured data 

and that predicted by our equation. The distance between the measured data and the 

predicted value is known as the residual and is defined. 

ii YY ˆResidual   

The residuals are squared and totaled to calculate the residual sum-of-squares (SSQ) 
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Least squares work by basically testing out various combinations of parameters to determine 

which provides the lowest SSQ. The SSQ is known as a parameter of “goodness-of-fit” and 

can be used in various statistical analyses. 

 

The method of least squares can be applied to both linear and non-linear problems. Linear 

least squares problems can be solved algebraically.  

 

 

 

 



4-1. Linear Least Squares 

 

1. By hands 

 (Experiment 3) 

Find k from the linearized data computed in Experiment 1. Discuss the results. Any 

errors in k? 

 

2. Fitting a line 

Given bxay   

Fit a line through given points (x1,y1), …, (xn, yn) so that the sum of the squares of the 

differences of those points from the straight line is minimum 

Minimize q (or SSQ) depends on a and b , thus a necessary condition for q  to be 

minimum is 

0)(2

0)(2









iii

ii

bxayx
db

dq

bxay
da

dq

 

Rewrite 


 





iiii

ii

yxxbxa

yxban

2
 

In matrix form 
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3. Fitting a function (generalized form) 

Let the data points be ix , iy  where i=1,2,...,m. The function to be fitted to the data has 

the form 

)(...)()()( 2211 xaxaxaxfy nn   

where )(xi  are chosen functions and ia  are unknown coefficients. Let the error between 

this function and the data point ( kx , ky ) be kq . Thus 
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Denoting the sum of the squares of these errors by S  we have 
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Hence 
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Rearranging these equations into matrix notation we have 
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Or in matrix form 

bPa   (*) 

where 
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 (Experiment 4) 

Derive bPa   by hands, a and b for 2
210)( xbxbbty   according to the 

procedures in 2 and 3.  

(Experiment 5) 

Find k from the data in Experiment 1, by writing a Matlab program for linear fitting (i.e., 

use Eq. (*) and inv function of Matlab) Any errors of k? 



4-2. Non-linear Least Squares 

In non-linear least squares problems, the complexity of the system requires some algorithms 

to search for the solution to the problem. With non-linear least squares, an iterative process 

is used to estimate the parameters. There are many different non-linear least squares 

algorithms, but the most common is the Marquardt-Levenburg. The various algorithms differ 

only in the way they search for the best parameters. 

 

(Experiment 6) 

This time, generate noisy y(t) by adding some noise. Generate random noise using rand 

or randi. Noise should be between -0.5~0.5 or -1~1. Add noise to y(t). The amount of 

noise can be controlled by multiplying a small number (i.e., 0.1 or 5). After adding noise, 

you should apply abs to make positive concentration of drug.  

Plot t vs. noise-free and t vs. noisy data for three different amounts of noise. Use k=0.05.  

 

(Experiment 7) 

Find k from the noise-free data from Experiment 1 and noisy data from Experiment 7 by 

writing a Matlab program for non-linear least squares fitting. (1) Plot SSQ vs. iteration, 

(2) Plot k_estimated vs. iteration, and (3) Plot fitting curve for every iteration. (Hint: use 

fminsearch.m and design a least square cost function.). Examine the estimated k value 

with respect to the noise level. Compute errors of k. Discuss the results.  

 

5. Goodness-of-Fit 

Goodness-of-fit assessment is not restricted to how well a given set of parameters fit the 

data. Goodness-of-fit also used to compare the ability of different models to account for the 

observed data. For example, in our drug study would a two-exponential function fit the data 

better? How do we show that the fit is improved with a different set of parameters or a 

different model? There are several parameters and statistics one can look at 

 

Sums-of-Squares (SSQ) 

The residual (or weighted) SSQ is a very good general indicator of goodness of fit. Recall 

that the least squares method minimizes SSQ to determine the best fit. One can compare 

SSQ (preferably weighted) to check for improvements in fits. CAUTION: The SSQ can be 

used to compare different models only if those models have the same number of 

parameters. 

 

 



R-Square 

R2 indicates what proportion of the y-variable is accounted for by the x-variable. The higher 

the R2, the better the model fit. The weakness of the R2 as an indicator of goodness-of-fit is 

its relatively low sensitivity. R2 can be high even if the fit is not good by alternative criteria. 

CAUSION: This statistic should not be used to compare different models. 

 

Residual Plots 

The SSQ and R2 provide information on the overall fit of the data, but do not provide any 

goodness-of-fit information over the course of the data collected. For our drug study 

example, we can plot the residuals over time to look for systematic deviations from the 

measured data. 

Ideally, the residuals should be randomly distributed about the zero line. Patterns in the 

residual plot typically indicate an inadequacy in the model structure, i.e., the model is not 

accounting for a process which contributes significantly to the observed dynamics. One can 

test for patterns in the residuals using a runs test, autocorrelation, or some similar methods. 

Residual testing is a powerful method for assessing differences in model fits. In our example, 

we have plotted the pure residuals ( YY ˆ ), but it is also common to plot residuals as a 

fraction (percent of the observed value), standardized to the mean data, or standardized to 

the known variance. 

 

6. Other Terms 

 

Error 

This is the standard deviation (SD) in the parameter estimate. i.e., an indicator of the 

precision with which the parameter was estimated. In the literature, this number is many 

times reported as a percent or fractional SD (FSD). 

 

Dependency 

Dependency means that a change in any one parameter of the group can be (nearly) 

compensated for by changes in the other parameters of the group. If these values are all 

zero, none of the parameters in the model are dependent upon each other. The magnitude 

in this number indicates the level of dependency between parameters 

 

Iterations 

Indicates how many iterations were performed before the program quit. If convergence is 



achieved, the program so notes. If convergence is not achieved, the program will also 

indicate as such. 

 

Best Weighted Sum of Squares 

This is the final estimate of the SSQ 

 

Weighted Root Mean Square Error 

This is the average standard deviation about zero calculated as follows: 
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where n is the number of data points, and p is the number of parameters estimated 

 

Initial Parameter Estimates 

Provided to the program as some guess or initial estimates about the parameter values. For 

each problem, there is a so-called parameter search space. Depending upon what the search 

space looks like, one runs the risk of hitting a local minimum. Therefore, it is important to 

choose initial parameter estimates which are physiologically plausible. For instance, one 

would not choose a plasma volume of 500 liters as an initial estimate. 

 

Convergence Criteria 

How do you decide when you have converged? After some time, the change in parameter 

estimates will have little to no effect on the fits to data. i.e., the fists and SSQ therefore do 

not change. Most routines will allow you to set a convergence criterion as a lower bound for 

a change in the SSQ. For example, one can state a priori that if the SSQ does not change by 

10%, then convergence is achieved. Remember that each problem is unique and the search 

space could contain several local minima. Therefore, it is wise to choose a convergence 

criterion, e.g., 0.1% change in SSQ 

 

Constraints 

Suppose you know a priori that a certain parameter must be within a certain range of values. 

Let’s take our drug study. The parameter k represents the rate of disappearance of the drug 

from the system, hence the negative sign in the exponent. If k were estimated to be a 

negative number, this would make the exponent positive, and therefore increase the drug 

over time. This would clearly be incorrect. To prevent such unreasonable parameter values, 

one can introduce constraints which indicate the range of values permissible for the 



identification. 

 

Weighting 

All biological data are imprecise. There are errors due to data collection and assay which 

result in noise in the data. The more imprecise the original measurement, the more noise in 

your data, and the less precise your parameter estimates will be. In fact, large errors in the 

data sometimes make it impossible to accurately estimate any parameters. The problems 

associated with data noise are partially circumvented by introducing weighting. Weighting is 

simply a way to indicate the relative importance of each data point to the total SSQ. 

Weighted SSQ are calculated as follows: 
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Where Wi indicates the weight for the given data point. Typically, inverse variance is used to 

weight the data. Inverse variance assumes that the user knows something about the true 

error in the data. For example, it is standard practice to know the coefficient of variation in 

an assay. This number could be used as a known weighting factor. The important thing to 

remember is that it is always assumed that the noise is random with a normal distribution. 

Bias will be introduced to the extent that this assumption is violated. 

 

If you have no idea about the actual variance in the data, an empirical approach may be 

used. One such approach is to smooth the data with some smoothing function, and 

estimate the variance by comparing the measured and smoothed data. Smoothing can be 

done using a moving average, polynomial, spline function, or optimal segments. 

 


