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Abstract—With a massive influx of multimodality data,
the role of data analytics in health informatics has grown
rapidly in the last decade. This has also prompted increas-
ing interests in the generation of analytical, data driven
models based on machine learning in health informatics.
Deep learning, a technique with its foundation in artificial
neural networks, is emerging in recent years as a powerful
tool for machine learning, promising to reshape the future of
artificial intelligence. Rapid improvements in computational
power, fast data storage, and parallelization have also con-
tributed to the rapid uptake of the technology in addition to
its predictive power and ability to generate automatically op-
timized high-level features and semantic interpretation from
the input data. This article presents a comprehensive up-to-
date review of research employing deep learning in health
informatics, providing a critical analysis of the relative merit,
and potential pitfalls of the technique as well as its future
outlook. The paper mainly focuses on key applications of
deep learning in the fields of translational bioinformatics,
medical imaging, pervasive sensing, medical informatics,
and public health.

Index Terms—Bioinformatics, deep learning, health
informatics, machine learning, medical imaging, public
health, wearable devices.

I. INTRODUCTION

D EEP learning has in recent years set an exciting new
trend in machine learning. The theoretical foundations

of deep learning are well rooted in the classical neural network
(NN) literature. But different to more traditional use of NNs,
deep learning accounts for the use of many hidden neurons and
layers—typically more than two—as an architectural advan-
tage combined with new training paradigms. While resorting to
many neurons allows an extensive coverage of the raw data at
hand, the layer-by-layer pipeline of nonlinear combination of
their outputs generates a lower dimensional projection of the
input space. Every lower-dimensional projection corresponds
to a higher perceptual level. Provided that the network is opti-
mally weighted, it results in an effective high-level abstraction
of the raw data or images. This high level of abstraction renders
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Fig. 1. Distribution of published papers that use deep learning in subar-
eas of health informatics. Publication statistics are obtained from Google
Scholar; the search phrase is defined as the subfield name with the exact
phrase deep learning and at least one of medical or health appearing,
e.g., “public health” “deep learning” medical OR health.

an automatic feature set, which otherwise would have required
hand-crafted or bespoke features.

In domains such as health informatics, the generation of this
automatic feature set without human intervention has many ad-
vantages. For instance, in medical imaging, it can generate fea-
tures that are more sophisticated and difficult to elaborate in de-
scriptive means. Implicit features could determine fibroids and
polyps [1], and characterize irregularities in tissue morphology
such as tumors [2]. In translational bioinformatics, such fea-
tures may also determine nucleotide sequences that could bind
a DNA or RNA strand to a protein [3]. Fig. 1 outlines a rapid
surge of interest in deep learning in recent years in terms of the
number of papers published in sub-fields in health informatics
including bioinformatics, medical imaging, pervasive sensing,
medical informatics, and public health.

Among various methodological variants of deep learning,
several architectures stand out in popularity. Fig. 2 depicts the
number of publications by deep learning method since 2010.
In particular, Convolutional Neural Networks (CNNs) have had
the greatest impact within the field of health informatics. Its
architecture can be defined as an interleaved set of feed-forward
layers implementing convolutional filters followed by reduction,
rectification or pooling layers. Each layer in the network orig-
inates a high-level abstract feature. This biologically-inspired
architecture resembles the procedure in which the visual cortex
assimilates visual information in the form of receptive fields.
Other plausible architectures for deep learning include those
grounded in compositions of restricted Boltzmann machines
(RBMs) such as deep belief networks (DBNs), stacked Autoen-
coders functioning as deep Autoencoders, extending artificial
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Fig. 2. Percentage of most used deep learning methods in health in-
formatics. Learning method statistics are also obtained from Google
Scholar by using the method name with at least one of medical or health
as the search phrase.

NNs with many layers as deep neural networks (DNNs), or with
directed cycles as recurrent neural networks (RNNs). Latest ad-
vances in Graphics Processing Units (GPUs) have also had a
significant impact on the practical uptake and acceleration of
deep learning. In fact, many of the theoretical ideas behind deep
learning were proposed during the pre-GPU era, although they
have started to gain prominence in the last few years. Deep
learning architectures such as CNNs can be highly parallelized
by transferring most common algebraic operations with dense
matrices such as matrix products and convolutions to the GPU.

Thus far, a plethora of experimental works have implemented
deep learning models for heath informatics, reaching similar
performance or in many cases exceeding that of alternative
techniques. Nevertheless, the application of deep learning to
health informatics raises a number of challenges that need to
be resolved. For example, training a deep architecture requires
an extensive amount of labeled data, which in the healthcare
domain can be difficult to achieve. In addition, deep learning re-
quires extensive computational resources, without which train-
ing could become excessively time-consuming. Attaining an
optimal definition of the network’s free parameters can become
a particularly laborious task to solve. Eventually, deep learning
models can be affected by convergence issues as well as over-
fitting, hence supplementary learning strategies are required to
address these problems [4].

In the following sections of this review, we examine recent
health informatics studies that employ deep learning to discuss
its relative strength and potential pitfalls. Furthermore, their
schemas and operational frameworks are described in detail to
elucidate their practical implementations, as well as expected
performance.

II. FROM PERCEPTRON TO DEEP LEARNING

Perceptron is a bio-inspired algorithm for binary classification
and it is one of the earliest NNs proposed [19]. It mathemat-
ically formalizes how a biological neuron works. It has been
realized that the brain processes information through billions
of these interconnected neurons. Each neuron is stimulated by
the injection of currents from the interconnected neurons and an
action potential is generated when the voltage exceeds a limit.
These action potentials allow neurons to excite or inhibit other

neurons, and through these networked neural activities, the bio-
logical network can encode, process, and transmit information.
Biological NNs have the capacity to modify themselves, create
new neural connections, and learn according to the stimulation
characteristics. Perceptrons, which consist of an input layer di-
rectly connected to an output node, emulate this biochemical
process through an activation function (also referred to as a
transfer function) and a few weights. Specifically, it can learn to
classify linearly separable patterns by adjusting these weights
accordingly.

To solve more complex problems, NNs with one or more hid-
den layers of Perceptrons have been introduced [20]. To train
these NNs, many stages or epochs are usually performed where
each time the network is presented with a new input sample
and the weights of each neuron are adjusted based on a learning
process called delta rule. The delta rule is used by the most com-
mon class of supervised NNs during the training and is usually
implemented by exploiting the back-propagation routine [21].
Specifically, without any prior knowledge, random values are
assigned to the network weights. Through an iterative training
process, the network weights are adjusted to minimize the dif-
ference between the network outputs and the desired outputs.
The most common iterative training method uses the gradient
descent method where the network is optimized to find the mini-
mum along the error surface. The method requires the activation
functions to be always differentiable.

Adding more hidden layers to the network allows a deep ar-
chitecture to be built that can express more complex hypotheses
as the hidden layers capture the nonlinear relationships. These
NNs are known as DNNs. Training of DNNs is not trivial be-
cause once the errors are back-propagated to the first few layers,
they become negligible (vanishing of the gradient), thus failing
the learning process. Although more advanced variants of back-
propagation [22] can solve this problem, they still result in a
very slow learning process.

Deep learning has provided new sophisticated approaches to
train DNN architectures. In general, DNNs can be trained with
unsupervised and supervised learning methodologies. In super-
vised learning, labeled data are used to train the DNNs and learn
the weights that minimize the error to predict a target value
for classification or regression, whereas in unsupervised learn-
ing, the training is performed without requiring labeled data.
Unsupervised learning is usually used for clustering, feature
extraction or dimensionality reduction. For some applications it
is common to combine an initial training procedure of the DNN
with an unsupervised learning step to extract the most relevant
features and then use those features for classification by exploit-
ing a supervised learning step. For more general background in-
formation related to the theory of machine learning, the reader
can refer to the works in [23]–[25] where common training
problems, such as overfitting, model interpretation and gener-
alization, are explained in detail. These considerations must be
taken into account when deep learning frameworks are used.

For many years, hardware limitations have made DNNs im-
practical due to high computational demands for both train-
ing and processing, especially for applications that require
real-time processing. Recently, advances in hardware and thanks
to the possibility of parallelization through GPU acceleration,
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cloud computing and multicore processing, these limitations
have been partially overcome and have enabled DNNs to be rec-
ognized as a significant breakthrough in artificial intelligence.
Thus far, several DNNs architectures have been introduced in
literature and Table I briefly describes the pros and cons of
the commonly used deep learning approaches in the field of
health informatics. In Table II are instead described the main
features of popular software packages that provide deep learn-
ing implementation. Finally, Table III summarizes the different
applications in the five areas of health informatics considered in
this paper.

A. Autoencoders and Deep Autoencoders

Recent studies have shown that there are no universally hand-
engineered features that always work on different datasets. Fea-
tures extracted using data driven learning can generally be more
accurate. An Autoencoder is a NN designed exactly for this
purpose. Specifically, an Autoencoder has the same number of
input and output nodes, as shown in Fig. 3(a), and it is trained
to recreate the input vector rather than to assign a class label to
it. The method is therefore unsupervised. Usually, the number
of hidden units is smaller than the input/output layers, which
achieve encoding of the data in a lower dimensional space and
extract the most discriminative features. If the input data is of
high dimensionality, a single hidden layer of an Autoencoder
may not be sufficient to represent all the data. Alternatively,
many Autoencoders can be stacked on top of each other to
create a deep Autoencoder architecture [5]. Deep Autoencoder
structures also face the problem of vanishing gradients dur-
ing training. In this case, the network learns to reconstruct the
average of all the training data. A common solution to this
problem is to initialize the weights so that the network starts
with a good approximation of the final configuration. Finding
these initial weights is referred to as pretraining and is usually
achieved by training each layer separately in a greedy fashion.
After pretraining, the standard back-propagation can be used to
fine-tune the parameters. Many variations of Autoencoder have
been proposed to make the learned representations more robust
or stable against small variations of the input pattern. For ex-
ample, the sparse autoencoder [6] that forces the representation
to be sparse is usually used to make the classes more separable.
Another variation, called denoising autoencoder, was proposed
by Vincent et al. [7], where in order to increase the robustness
of the model, the method recreates the input introducing some
noise to the patterns, thus, forcing the model to capture just
the structure of the input. A similar idea was implemented in
contractive autoencoder, proposed by Rifai et al. [8], but instead
of injecting noise to corrupt the training set, it adds an analytic
contractive penalty to the error function. Finally, the convolu-
tional autoencoder [9] shares weights between nodes to preserve
spatial locality and process two-dimensional (2-D) patterns (i.e.,
images) efficiently.

B. Recurrent Neural Network

RNN [13] is a NN that contains hidden units capable
of analyzing streams of data. This is important in several

Fig. 3. Schematic illustration of simple NNs without deep structures.
(a) Autoencoder. (b) Restricted Boltzmann machine.

applications where the output depends on the previous computa-
tions, such as the analysis of text, speech, and DNA sequences.
The RNN is usually fed with training samples that have strong
inter-dependencies and a meaningful representation to maintain
information about what happened in all the previous time steps.
The outcome obtained by the network at time t − 1 affects the
choice at time t. In this way, RNNs exploit two sources of input,
the present and the recent past, to provide the output of the new
data. For this reason, it is often said that RNNs have memory. Al-
though the RNN is a simple and powerful model, it also suffers
from the vanishing gradient and exploding gradient problems
as described in Bengio et al. [26]. A variation of RNN called
long short-term memory units (LSTMs), was proposed in [27]
to solve the problem of the vanishing gradient generated by long
input sequences. Specifically, LSTM is particularly suitable for
applications where there are very long time lags of unknown
sizes between important events. To do so, LSTMs exploit new
sources of information so that data can be stored in, written to,
or read from a node at each step. During the training, the net-
work learns what to store and when to allow reading/writing in
order to minimize the classification errors.

Unlike other types of DNNs, which uses different weights at
each layer, a RNN or a LSTM shares the same weights across all
steps. This greatly reduces the total number of parameters that
the network needs to learn. RNNs have shown great successes
in many natural language processing tasks such as language
modeling, bioinformatics, speech recognition, and generating
image description.

C. RBM-Based Technique

A RBM was first proposed in [37] and is a variant of the
Boltzmann machine, which is a type of stochastic NN. These
networks are modeled by using stochastic units with a spe-
cific distribution (for example Gaussian). Learning procedure
involves several steps called Gibbs sampling, which gradually
adjust the weights to minimize the reconstruction error. Such
NNs are useful if it is required to model probabilistic relation-
ships between variables.

Bayesian networks [38], [39] are a particular case of network
with stochastic unit referred as probabilistic graphical model that
characterizes the conditional independence between variables
in the form of a directed acyclic graph. In an RBM, the visible
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TABLE I
DIFFERENT DEEP LEARNING ARCHITECTURES
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TABLE II
POPULAR SOFTWARE PACKAGES THAT PROVIDE DNNS IMPLEMENTATION

Name Creator License Platform Interface OpenMP Supported techniques Cloud
support

RNN CNN DBN
computing

Caffe [28] Berkeley Center FreeBSD Linux, Win, OSX, Andr. C++, Python, MATLAB ✗
√ √

✗ ✗

CNTK [29] Microsoft MIT Linux, Win Command line
√ √ √

✗ ✗

Deeplearning4jK [30] Skymind Apache 2.0 Linux, Win, OSX, Andr. Java, Scala, Clojure
√ √ √ √

✗

Wolfram Math. [31] Wolfram Research Proprietary Linux, Win, OSX, Cloud Java, C++ ✗ ✗
√ √ √

TensorFlow [32] Google Apache 2.0 Linux, OSX Python ✗
√ √ √

✗

Theano [33] Université de Montréal BSD Cross-platform Python
√ √ √ √

✗

Torch [34] Ronan Collobert et al. BSD Linux, Win, OSX, Andr., iOS Lua, LuaJIT, C
√ √ √ √

✗

Keras [35] Franois Chollet MIT license Linux, Win, OSX Python ✗
√ √ √

✗

Neon [36] Nervana Systems Apache 2.0 OSX, Linux Python
√ √ √ √ √

TABLE III
SUMMARY OF THE DIFFERENT DEEP LEARNING METHODS BY AREAS AND APPLICATIONS IN HEALTH INFORMATICS

and hidden units are restricted to form a bipartite graph that
allows implementation of more efficient training algorithms.
Another important characteristics is that RBMs have undirected
nodes, which implies that values can be propagated in both the
directions as shown in Fig. 3(b).

Contrastive divergence [40] (CD) algorithm is a common
method used to train an RBM. CD is an unsupervised learning
algorithm, which consists of two phases that can be referred to
as positive and negative phases. During the positive phase the
network configuration is modified to replicate the training set,
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whereas during the negative phase it attempts to recreate the
data based on the current network configuration.

A beneficial property of RBM is that the conditional distri-
bution over the hidden units factorizes given the visible units.
This makes inferences tractable since the RBM feature repre-
sentation is taken to be a set of posterior marginal obtained by
directly maximizing the likelihood. Utilizing RBM as learning
modules, two main deep learning frameworks have been pro-
posed in literature: the DBN and the deep Boltzmann machine
(DBM).

1) Deep Belief Network: Proposed in [10], a DBN can be
viewed as a composition of RBMs where each subnetwork’s
hidden layer is connected to the visible layer of the next RBM.
DBNs have undirected connections only at the top two layers
and directed connections to the lower layers. The initialization
of a DBN is obtained through an efficient layer-by-layer greedy
learning strategy using unsupervised learning and is then fine-
tuned based on the target outputs.

2) Deep Boltzmann Machines: Proposed in [11], a DBM
is another DNN variant based on the Boltzmann family. The
main difference with DBN is that the former possesses undi-
rected connections (conditionally independent) between all
layers of the network. In this case, calculating the posterior
distribution over the hidden units given the visible units can-
not be achieved by directly maximizing the likelihood due to
interactions between the hidden units. For this reason, to train
a DBM, a stochastic maximum likelihood [12] based algorithm
is usually used to maximize the lower bound of the likelihood.
Same as for DBNs, a greedy layer-wise training strategy is also
performed when pretraining the DBM network. The main dis-
advantage of a DBM is the time complexity required for the
inference that is considerably higher with respect to the DBN,
and that makes the optimization of the parameters not practical
for big training set [41].

D. Convolutional Neural Networks

In general, all the DNNs presented so far cannot scale well
with multidimensional input that has locally correlated data,
such as an image. The main problem is that the number of
nodes and the number of parameters that they have to train could
be huge, and therefore, they are not practical. CNNs have been
proposed in [14] to analyze imagery data. The name of these net-
works comes from the convolution operator that is an easy way
to perform complex operations using convolution filter. CNN
does not use predefined kernels, but instead learns locally con-
nected neurons that represent data-specific kernels. Since these
filters are applied repeatedly to the entire image, the resulting
connectivity looks like a series of overlapping receptive fields.
The main advantage of a CNN is that during back-propagation,
the network has to adjust a number of parameters equal to a
single instance of the filter which drastically reduces the con-
nections from the typical NN architecture. The concept of CNN
is largely inspired by the neurobiological model of the visual
cortex [15]. The visual cortex is known to consist of maps of
local receptive fields that decrease in granularity as the cortex
moves anteriorly. This process can be briefly summarized as
follows:

Fig. 4. Basic architecture of CNN which consists in several layers of
convolution and subsampling to efficiently process images.

Fig. 5. Overview of the different inputs and applications in biomedical
and health informatics.

1) The input image is convolved using several small filters.
2) The output at Step 1 is subsampled.
3) The output at Step 2 is considered the new input and the

convolution and subsampling processes are repeated until
high level features can be extracted.

According to the aforementioned schema, a typical CNN con-
figuration consists of a sequence of convolution and subsample
layers as illustrated in Fig. 4. After the last subsampling layer, a
CNN usually adopts several fully-connected layers with the aim
of converting the 2-D feature maps into a 1-D vector to allow fi-
nal classification. Fully-connected layers can be considered like
traditional NNs and they contain about 90% of the parameters
of the entire CNN, which increases the effort required for train-
ing considerably. A common solution for solving this problem
is to decrease the connections in these layers with a sparsely
connected architecture. To this end, many configurations and
variants have been proposed in literature and some of the most
popular CNNs at the moment are: AlexNet [16], Clarifai [17],
VGG [42], and GoogLeNet [18].
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A more recent deep learning approach is known as convo-
lutional deep belief networks (CDBN) [43]. CDBN maintains
structures that are very similar to a CNN, but is trained similarly
to a DBN. Therefore, it exploits the advantages of CNN whilst
making use of pretraining to initialize efficiently the network as
a DBN does.

E. Software/Hardware Implementations

Table II lists the most popular software packages that al-
low implementation of customized deep learning methodolo-
gies based on the approaches described so far. All the software
listed in the table can exploit CUDA/Nvidia support to improve
performance using GPU acceleration. Adding to the growing
trend of proprietary deep learning frameworks being turned
into open source projects, some companies, such as Wolfram
Mathematica [31] and Nervana Systems [36], have decided to
provide a cloud based services that allow researchers to speed-
up the training process. New GPU acceleration hardware in-
cludes purpose-built microprocessors for deep learning, such
as the Nvidia DGX-1 [44]. Other possible future solutions are
neuromorphic electronic systems that are usually used in com-
putational neuroscience simulations. These later hardware ar-
chitectures intend to implement artificial neurons and synapses
in a chip. Some current hardware designs are IBM TrueNorth,
SpiNNaker [45], NuPIC, and Intel Curie.

III. APPLICATIONS

A. Translational Bioinformatics

Bioinformatics aims to investigate and understand biological
processes at a molecular level. The human genome project has
made available a vast amount of unexplored data and allowed
the development of new hypotheses of how genes and environ-
mental factors interact together to create proteins [118], [119].
Further advances in biotechnology have helped reduce the cost
of genome sequencing and steered the focus on prognostic,
diagnostic and treatment of diseases by analyzing genes and
proteins. This can be illustrated by the fact that sequencing the
first human genome cost billions of dollars, whereas today it is
affordable [45]. Further motivated by P4 (predictive, personal-
ized, preventive, participatory) medicine [120], bioinformatics
aims to predict and prevent diseases by involving patients in the
development of more efficient and personalized treatments.

The application of machine learning in bioinformatics (Fig. 5)
can be divided into three areas: prediction of biological pro-
cesses, prevention of diseases and personalized treatment. These
areas are found in genomics, pharmacogenomics and epige-
nomics. Genomics explores the function and information struc-
tures encoded in the DNA sequences of a living cell [121]: it
analyzes genes or alleles responsible for the creation of protein
sequences and the expression of phenotypes. A goal of genomics
is to identify gene alleles and environmental factors that con-
tribute to diseases such as cancer. Identification of these genes
can enable the design of targeted therapies [121]. Pharmacoge-
nomics evaluates variations in an individual’s drug response
to treatment brought about by differences in genes. It aims to
design more efficient drugs for personalized treatment whilst

reducing side effects. Finally, epigenomics aims to investigate
protein interactions and understand higher level processes, such
as transcriptome (mRNA count), proteome, and metabolome,
which lead to modification in the gene’s expression. Under-
standing how environmental factors affect protein formation
and their interactions is a goal of epigenomics.

1) Genetic Variants: splicing and alternative splicing
code. Genetic variant aims to predict human splicing code in
different tissues and understand how gene expression changes
according to genetic variations. Alternative splicing code is the
process from which different transcripts are generated from one
gene. Prediction of splicing patterns is crucial to better under-
stand genes variations, phenotypes consequences and possible
drug effect variations. Genetic variances play a significant role
in the expression of several diseases and disorders, such as
autism, spinal muscular atrophy, and hereditary colorectal can-
cer. Therefore, understanding genetic variants can be a key to
provide early diagnosis.

2) Protein–Protein and Compound-Protein Interac-
tions (CPI): Quantitative structure activity relationship
(QSAR) aims to predict the protein–protein interaction
normally based on structural molecular information. CPI
aims to predict the interaction between a given compound
and protein. Protein–protein and protein-compound interac-
tions are important in virtual screening for drug discovery:
they help identifying new compounds, toxic substances, and
provide significant interpretation on how a drug will affect any
type of cell, targeted or not. Specifically to epigenomics, QSAR
and CPI help modeling the RNA protein binding.

3) DNA Methylation: DNA methylation states are part of
a process that changes the DNA expression without changing
the DNA sequence itself. This can be brought about by a wide
range of reasons, such as chromosome instability, transcription
or translation errors, cell differentiation or cancer progression.

The datasets are usually high dimensional, heterogeneous,
and sometimes unbalanced. The conventional workflow in-
cludes data preprocessing/cleaning, feature extraction, model
fitting, and evaluation [122]. These methods do not operate
on the sequence data directly but they require domain knowl-
edge. For example, the ChEMBL database, used in pharmacoge-
nomics, has millions of compounds and compound descriptors
associated with a large database of drug targets [45]. Such
databases encode molecular “fingerprints” and are major
sources of information in drug discovery applications. Tra-
ditional machine learning approaches have been successful,
mostly because the complexity of molecular interactions was
reduced by only investigating one or two dimension of the
molecule structure in the feature descriptors. Reducing design
complexity inevitably leads to ignore some relevant but uncap-
tured aspects of the molecular structures [123], [124]. However,
Zhang et al. [50] used deep learning to model structural features
for RNA binding protein prediction and showed that using the
RNA tertiary structural profile can improve outcomes.

Extracting biomarkers or alleles of genes responsible for a
specific disorder is very challenging as it requires a great amount
of data from a large diversified cohort. The markers should be
present—if possible at different concentration levels throughout
the disorder’s evolution and patient’s treatment—with a direct
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explanation on the phenotype changes due to the disease [125].
One approach accounting for sequence variation which limits
the number of required subjects is to split the sequence into win-
dows centered on the investigated trait. Although this results in
thousands of training examples of molecular traits even from
just one genome, a large scale of DNA sequences and interac-
tions mediated by various distant regulatory factors should be
used [122].

The ability of deep learning to abstract large, complex, and
unstructured data offers a powerful way of analyzing hetero-
geneous data such as gene alleles, proteins occurrences, and
environmental factors [126]. Their contribution to bioinfor-
matics has been reviewed in several related areas [45], [121],
[122], [124], [126]–[129]. In deep learning approaches, feature
extraction and model fitting takes place in a unified step. Multi-
layer feature representation can capture nonlinear dependencies
at multiple scales of transcriptional and epigenetic interactions
and can model molecular structure and properties in a data-
driven way. These nonlinear features are invariant to small input
changes which results in eliminating noise and increasing the
robustness of the technique.

Several works have demonstrated that deep learning fea-
tures outperformed methods relying on visual descriptors in
the recognition and classification of cancer cells. For example,
Fakoor et al. [2] proposed an autoencoder architecture based
on gene expression data from different types of cancer and the
same microarray dataset to detect and classify cancer. Ibrahim
et al. [46] proposed a DBN with an active learning approach to
find features in genes and microRNA that resulted in the best
classification performance of various cancer diseases such as
hepatocellular carcinoma, lung cancer and breast cancer. For
breast cancer genetic detection, Khademi et al. [47] overcame
missing attributes and noise by combining a DBN and Bayesian
network to extract features from microarray data. Deep learning
approaches have also outperformed SVM in predicting splicing
code and understanding how gene expression changes by ge-
netic variants [48], [130]. Angermueller et al. [52] used DNN
to predict DNA methylation states from DNA sequences and
incomplete methylation profiles. After applying to 32 embry-
onic mice stem cells, the baseline model was compared with the
results. This method can be used for genome-wide downstream
analyses.

Deep learning not only outperforms conventional approaches
but also opens the door to more efficient methods to be devel-
oped. Kearnes et al. [123] described how deep learning based
on graph convolutions can encode molecular structural features,
physical properties, and activities in other assays. This allows a
rich representation of possible interactions beyond the molecu-
lar structural information encoded in standard databases. Simi-
larly, multitask DNNs provides an intuitive model of correlation
between molecule compounds and targets because information
can be shared among different nodes. This increases robustness,
reduces chances to miss information, and usually outperforms
other methods that process large datasets [49].

Deep learning has rapidly been adopted in the field of bioin-
formatics due to several open source packages. However, there
are no standard methods of choosing model architectures and

their use require expertise in computer science and biology.
Therefore, the question of integrating the software development
and the data has been raised [127]. Also, deep learning ap-
proaches do not include a standard way of establishing statistical
significance, which is a limitation for future result comparisons.
Therefore, conventional methods offer some advantages, espe-
cially in the case of small datasets. Although DNNs scale better
to large datasets, the computational cost is high, resulting in
the specific necessity of chips for massive parallel processing in
order to deal with the increased complexity [45].

B. Deep Learning for Medical Imaging

Automatic medical imaging analysis is crucial to modern
medicine. Diagnosis based on the interpretation of images can be
highly subjective. Computer-aided diagnosis (CAD) can provide
an objective assessment of the underlying disease processes.
Modeling of disease progression, common in several neuro-
logical conditions, such as Alzheimer’s, multiple sclerosis, and
stroke, requires analysis of brain scans based on multimodal
data and detailed maps of brain regions.

In recent years, CNNs have been adapted rapidly by the med-
ical imaging research community because of their outstanding
performance demonstrated in computer vision and their ability
to be parallelized with GPUs. The fact that CNNs in medical
imaging have yielded promising results have also been high-
lighted in a recent survey of CNN approaches in brain pathology
segmentation [58] and in an editorial of deep learning tech-
niques in computer aided detection, segmentation, and shape
analysis [76].

Among the biggest challenges in CAD are the differences in
shape and intensity of tumors/lesions and the variations in imag-
ing protocol even within the same imaging modality. In several
cases, the intensity range of pathological tissue may overlap
with that of healthy samples. Furthermore, Rician noise, non-
isotropic resolution, and bias field effects in magnetic resonance
images (MRI) cannot be handled automatically using simpler
machine learning approaches. To deal with this data complexity,
hand-designed features are extracted and conventional machine
learning approaches are trained to classify them in a completely
separate step.

Deep learning provides the possibility to automate and merge
the extraction of relevant features with the classification pro-
cedure [55], [65]. CNNs inherently learn a hierarchy of in-
creasingly more complex features and, thus, they can operate
directly on a patch of images centered on the abnormal tissue.
Example applications of CNNs in medical imaging include the
classification of interstitial lung diseases based on computed
tomography (CT) images [70], the classification of tuberculo-
sis manifestation based on X-ray images [71], the classifica-
tion of neural progenitor cells from somatic cell source [57],
the detection of haemorrhages in color fundus images [69]
and the organ or body-part-specific anatomical classification
of CT images [68]. A body-part recognition system is also pre-
sented in Yan et al. [75]. A multistage deep learning framework
based on CNNs extracts both the patches with the most as well
as least discriminative local patches in the pretraining stage.
Subsequently, a boosting stage exploits this local information
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to improve performance. The authors point out that training
based on discriminative local appearances are more accurate
compared to the usage of global image context. CNNs have also
been proposed for the segmentation of isointense stage brain
tissues [131] and brain extraction from multimodality MR im-
ages [56].

Hybrid approaches that combine CNNs with other architec-
tures are also proposed. In [66], a deep learning algorithm is
employed to encode the parameters of a deformable model and
thus facilitate the segmentation of the left ventricle (LV) from
short-axis cardiac MRI. CNNs are employed to automatically
detect the LV, whereas deep Autoencoders are utilized to infer
its shape. Yu et al. [67] designed a wireless capsule endoscopy
classification system based on a hybrid CNN with extreme learn-
ing machine (ELM). The CNN constitutes a data-driven feature
extractor, whereas the cascaded ELM acts as a strong classifier.

A comparison between different CNNs architectures con-
cluded that deep CNNs of up to 22 layers can be useful even
with limited training datasets [73]. More detailed description of
various CNNs architectures proposed in medical imaging anal-
ysis is presented in previous survey [58]. The key challenges
and limitations are:

1) CNNs are designed for 2-D images whereas segmen-
tation problems in MRI and CT are inherently 3-D.
This problem is further complicated by the anisotropic
voxel size. Although the creation of isotropic images
by interpolating the data is a possibility, it can result in
severely blurred images. Another solution is to train the
CNNs on orthogonal patches extracted from axial, sagit-
tal and coronal views [62], [132]. This approach also
drastically reduces the time complexity required to pro-
cess 3-D information and thus alleviates the problem of
overfitting.

2) CNNs do not model spatial dependencies. Therefore,
several approaches have incorporated voxel neighboring
information either implicitly or by adding a pairwise term
in the cost function, which is referred as conditional ran-
dom field [85].

3) Preprocessing to bring all subjects and imaging modali-
ties to similar distribution is still a crucial step that affects
the classification performance. Similarly to conventional
machine learning approaches, balancing the datasets with
bootstrapping and selecting samples with high entropy is
advantageous.

Perhaps, all of these limitations result from or are exacerbated
by small and incomplete training datasets. Furthermore, there is
limited availability of ground-truth/annotated data, since the cost
and time to collect and manually annotate medical images is pro-
hibitively large. Manual annotations are subjective and highly
variable across medical experts. Although, it is thought that the
manual annotation would require highly specialized knowledge
in medicine and medical imaging physics, recent studies sug-
gest that nonprofessional users could perform similarly [76].
Therefore, crowdsourcing is suggested as a viable alternative
to create low-cost, big ground-truth medical imaging datasets.
Moreover, the normal class is often over represented since the
healthy tissue usually dominates and forms highly repetitive pat-

terns. These issues result in slow convergence and overfitting.
To alleviate the lack of training samples, transfer learning via
fine tuning have been suggested in medical imaging applica-
tions [58], [72], [74], [76]. In transfer learning via fine-tuning, a
CNN is pretrained using a database of labeled natural images.
The use of natural images to train CNNs in medical imaging is
controversial because of the profound difference between nat-
ural and medical images. Nevertheless, Tajbakhsh et al. [74]
showed that fine-tuned CNNs based on natural images are less
prone to overfitting due to the limited size training medical
imaging sets and perform similarly or better than CNNs trained
from scratch. Shin et al. [73] has applied transfer learning from
natural images in thoraco-abdominal lymph node detection and
interstitial lung disease classification. They also reported better
results than training the CNNs from scratch with more consis-
tent performances of validation loss and accuracy traces. Chen
et al. [72] applied successfully a transfer learning strategy to
identify the fetal abdominal standard plane. The lower layers of
a CNN are pretrained based on natural images. The approach
shows improved capability of the algorithm to encode the com-
plicated appearance of the abdominal plane. Multitask training
has also been suggested to handle the class imbalance common
in CAD applications. Multitasking refers to the idea of solving
different classification problems simultaneously and it results in
a drastic reduction of free parameters [133].

Although CNNs have dominated medical image analysis ap-
plications, other deep learning approaches/architectures have
also been applied successfully. In a recent paper, a stacked de-
noising autoencoder was proposed for the diagnosis of benign
malignant breast lesions in ultrasound images and pulmonary
nodules in CT scans [77]. The method outperforms classical
CAD approaches, largely due to the automatic feature extraction
and noise tolerance. Furthermore, it eliminates the image seg-
mentation process to obtain a lesion boundary. Shan et al. [53]
presented a stacked sparse autoencoder for microaneurysms de-
tection in fundus images as an instance of a diabetic retinopathy
strategy. The proposed method learns high-level distinguishing
features based only on pixel intensities.

Various autoencoder-based learning approaches have also
been applied to the automatic extraction of biomarkers from
brain images and the diagnosis of neurological diseases.
These methods often use available public domain brain image
databases such as the Alzheimer’s disease neuroimaging initia-
tive database. For example, a deep Autoencoder combined with
a softmax output layer for regression is proposed for the diag-
nosis of Alzheimer’s disease. Hu et al. [134] also used autoen-
coders for Alzheimer’s disease prediction based on Functional
Magnetic Resonance Images (fMRI). The results show that the
proposed method achieves much better classification than the
traditional means. On the other hand, Li et al. [61] proposed
an RBM approach that identifies biomarkers from MRI and
positron emission tomography (PET) scans. They obtained an
improvement of about 6% in classification accuracy compared
to the standard approaches. Kuang et al. [60] proposed an RBM
approach for fMRI data to discriminate attention deficit hyperac-
tivity disorder. The system is capable of predicting the subjects
as control, combined, inattentive or hyperactive through their
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frequency features. Suk et al. [59] proposed a DBM to extract
a latent hierarchical feature representation from 3-D patches of
brain images.

Low level image processing, such as image segmentation and
registration can also benefit from deep learning models. Brosch
et al. [64] described a manifold learning approach of 3-D brain
images based on DBN. It is different than other methods because
it does not require a locally linear manifold space. Mansoor
et al. [54] developed a fully automated shape model segmenta-
tion mechanism for the analysis of cranial nerve systems. The
deep learning approach outperforms conventional methods par-
ticularly in regions with low contrast, such as optic tracts and
areas with pathology. In [135], a pipeline is proposed for object
detection and segmentation in the context of automatically pro-
cessing volumetric images. A novel framework called marginal
space deep learning implements an object parameterization in
hierarchical marginal spaces combined with automatic feature
detection based on deep learning. In [84], a DNN architecture
called input–output deep architecture is described to solve the
image labelling problem. A single NN forward step is used
to assign a label to each pixel. This method avoids the hand-
crafted subjective design of a model with a deep learning mech-
anism, which automatically extracts the dependencies between
labels. Deep learning is also used for processing hyperspec-
tral images [83]. Spectral and spatial learned features are com-
bined together in a hierarchical model to characterize tissues or
materials.

In [78], a hybrid multilayered group method of data handling,
which is a special NN with polynomial activation functions, has
been used together with a principal component-regression anal-
ysis to recognize the liver and spleen. A similar approach is
used for the identification of the myocardium [79] as well as
the right and left kidney regions [80]. The authors extend the
method to analyze brain or lung CT images to detect cancer [81].
Zhen et al. [63] presents a framework for direct biventricular
volume estimation, which avoids the need of user inputs and
over simplification assumptions. The learning process involves
unsupervised cardiac image representation with multiscale deep
networks and direct biventricular volume estimation with RF.
Rose et al. [82] propose a methodology for hierarchical cluster-
ing in application to mammographic image data. Classification
is performed based on a deep learning architecture along with a
standard NN.

In general, deep learning in medical imaging provides auto-
matic discovery of object features and automatic exploration of
feature hierarch and interaction. In this way, a relatively sim-
ple training process and a systematic performance tuning can
be used, making deep learning approaches improve over the
state-of-the art. However, in medical imaging analysis, their po-
tentials have not been unfolded fully. To be successful in disease
detection and classification approaches, deep learning requires
the availability of large labeled datasets. Annotating imaging
datasets is an extremely time-consuming and costly process that
is normally undertaken by medical doctors. Currently, there is
a lot of debate on whether to increase the number of annotated
datasets with the help of non-experts (crowd-sourcing) and how
to standardize the available images to allow objective assess-
ment of the deep learning approaches.

Fig. 6. Data for health monitoring applications can be captured using
a wide array of pervasive sensors that are worn on the body, implanted,
or captured through ambient sensors, e.g., inertial motion sensors, ECG
patches, smart-watches, EEG, and prosthetics.

C. Pervasive Sensing for Health and Wellbeing

Pervasive sensors, such as wearable, implantable, and am-
bient sensors [136] allow continuous monitoring of health and
wellbeing, Fig. 6. An accurate estimation of food intake and
energy expenditure throughout the day, for example, can help
tackle obesity and improve personal wellbeing. For elderly pa-
tients with chronic diseases, wearable and ambient sensors can
be utilized to improve quality of care by enabling patients to
continue living independently in their own homes. The care
of patients with disabilities and patients undergoing rehabilita-
tion can also be improved through the use of wearable and im-
plantable assistive devices and human activity recognition. For
patients in critical care, continuous monitoring of vital signs,
such as blood pressure, respiration rate, and body tempera-
ture, are important for improving treatment outcomes by closely
analyzing the patient’s condition [137].

1) Energy Expenditure and Activity Recognition: Obe-
sity has been identified as an escalating global epidemic health
problem and is found to be associated with many chronic dis-
eases, including type 2 diabetes and cardiovascular diseases.
Dietitian recommend that only a standard amount of calories
should be consumed to maintain a healthy balance within the
body. Accurately recording the foods consumed and physical
activities performed can help to improve health and manage
diseases; however, selecting features that can generalize across
the wide variety of food and daily activities is a major challenge.
A number of solutions that use smartphones or wearable devices
have been proposed for managing food intake and monitoring
energy expenditure.

In [99], an assistive calorie measurement system is pro-
posed to help patients and doctors to control diet-related health
conditions. The proposed smartphone-based system estimates
the calories contained in pictures of food taken by the user. In



14 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 1, JANUARY 2017

order to recognize food accurately in the system, a CNN is used.
In [100], deep learning, mobile cloud computing, distance esti-
mation, and size calibration tools are implemented on a mobile
device for food calorie estimation.

To identify different activities, [90] proposes to combine deep
learning techniques with invariant and slowly varying features
for the purpose of learning hierarchical representations from
video. Specifically, it uses a two-layered structure with 3-D con-
volution and max pooling to make the method scalable to large
inputs. In [94], a deep learning based algorithm is developed
for human activity recognition using RGB-D video sequences.
A temporal structure is learnt in order to improve the classifi-
cation of human activities. [91] proposed an elderly and child
care intelligent surveillance system where a three stream CNN
is proposed for recognizing particular human actions such as
fall and baby crawl. If the system detects abnormal activities, it
will raise an alarm and notify family members.

Zeng et al. [92] compared the performance of a CNN based
method on three public human activity recognition datasets and
found that their deep learning approach can obtain better overall
classification accuracy across different human activities as the
method is more generalizable. Ha et al. [93] also used a CNN
for human activity recognition. CNNs can capture local relation-
ships from data as well as provide invariance against distortion,
which makes it popular for learning features from images and
speech. Choi et al. [95] employed RBMs to learn activities
using data from smart watches and home activity datasets, re-
spectively, with improvements shown over baseline methods.
However, for low-power devices such as smart-watches and
sensor nodes, efficiency is often a concern, especially when a
deep learning method with high computational complexity is
needed for learning. To overcome this, Ravı̀ et al. [96] proposed
data preprocessing techniques to standardize and reduce varia-
tions in the input data caused by differences in sensor properties,
such as placement and orientation.

2) Assistive Devices: Recognizing generic objects from
the 3-D world, understanding shape and volume or classifica-
tion of scene are important features required for assistive de-
vices. These applications are mainly developed to guide users
and provide audio or tactile feedback, for example, in the case
of impaired patients that need a system to avoid obstacles along
the path or receive information concerned with the surrounding
environment. For example, Poggi et al. [97] proposed a robust
obstacle detection system for people suffering from visual im-
pairments. Here a wearable device based on CNN is designed.

Assistive devices that can recognize hand gestures have also
been proposed for patients with disabilities—for applications
such as sign language interpretation—and sterile environments
in the surgical setting—to allow for touch less human-computer-
interaction (HRI). However, gesture recognition is a very chal-
lenging task due to the complexity and large variations in hand
postures. Huang et al. [98] proposes a method for sign lan-
guage recognition which involves the use of a DNN fed with
real-sense data. The DNN takes the 3-D coordinates of finger
joints as inputs directly with no handcrafted features used.

3) Detection of Abnormalities in Vital Signs: For criti-
cally ill patients, identifying abnormalities in their vital signs

is important. These episodes, however, are rare, vary between
patients, and susceptible to noise and artifacts. Machine learn-
ing approaches have been proposed for detecting abnormali-
ties under a varying set of condition and thus their application
in a clinical setting is limited. Furthermore, with continuous
sensing, large volumes of data can be generated, such as elec-
troencephalography (EEG) record signal from a large number
of input channels with a high temporal resolution (several kHz).
Managing this amount of time-series data requires the develop-
ment of online algorithms that could process the varying types
of data.

Wulsin et al. [89] proposed a DBN approach to detect anoma-
lies in EEG waveforms. EEG is used to record electrical activity
of the brain. Interpreting the waveforms from brain activity is
challenging due to the high dimensionality of the input signal
and the limited understanding of the intrinsic brain operations.
Using a large set of training data, DBNs outperform SVM and
have a faster query time of around 10s for 50 000 samples. Jia
et al. [86] used a deep learning method based on RBMs to recog-
nize affective state of EEG. Although the sample sets are small
and noisy, the proposed method achieves greater accuracy. A
DBN was also used for detecting arrhythmias from electrocar-
diography (ECG) signals. A DBN was also used in monitoring
heart rhythm based on ECG data [87]. The main purpose of the
system is identifying arrhythmias which are a complex pattern
recognition problem. Yan et al. attained classification accuracies
of 98% using a two-lead ECG dataset. For low-power wearable
and implantable EEG sensors, where energy consumption and
efficiency are major concerns, Wang et al. [88] designed a DBN
to compress the signal. This results in more than 50% of energy
savings while retaining accuracy for neural decoding.

The introduction of deep learning has increased the utility
of pervasive sensing across a range of health applications by
improving the accuracy of sensors that measure food calorie
intake, energy expenditure, activity recognition, sign language
interpretation, and detection of anomalous events in vital signs.
Many applications use deep learning to achieve greater effi-
ciency and performance for real-time processing on low-power
devices; however, a greater focus should be placed upon imple-
mentations on neuromorphic hardware platforms designed for
low-power parallel processing. The most significant improve-
ments in performance have been achieved where the data has
high dimensionality—as seen in the EEG datasets—or high
variability—due to changes in sensor placement, activity, and
subject. Most current research has focused on the recognition of
activities of daily living and brain activity. Many opportunities
for other applications and diseases remain, and many currently
studies still rely upon relatively small datasets that may not fully
capture the variability of the real world.

D. Medical Informatics

Medical Informatics focuses on the analysis of large, ag-
gregated data in health-care settings with the aim to enhance
and develop clinical decision support systems or assess medical
data both for quality assurance and accessibility of health care
services. Electronic health records (EHR) are an extremely rich
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source of patient information, which include medical history
details such as diagnoses, diagnostic exams, medications and
treatment plans, immunization records, allergies, radiology im-
ages, sensors multivariate times series (such as EEG from inten-
sive care units), laboratory, and test results. Efficient mining of
this big data would provide valuable insight into disease man-
agement [138], [139]. Nevertheless, this is not trivial because
of several reasons:

1) Data complexity owing to varying length, irregular sam-
pling, lack of structured reporting and missing data. The
quality of reporting varies considerably among institu-
tions and persons.

2) Multimodal datasets of several petabytes that includes
medical images, sensors data, lab results, and unstruc-
tured text reports.

3) Long-term time dependencies between clinical events
and disease diagnosis and treatment that complicates
learning. For example, long and varying delays often
separate the onset of disease from the appearance of
symptoms.

4) Inability of traditional machine learning approaches to
scale up to large and unstructured datasets.

5) Lack of interpretability of results hinders adaptation of
the methods in the clinical setting.

Deep learning approaches have been designed to scale up
well with big and distributed datasets. The success of DNNs
is largely due to their ability to learn novel features/patterns
and understand data representation in both an unsupervised and
supervised hierarchical manners. DNNs have also proven to
be efficient in handling multimodal information since they can
combine several DNN architectural components. Therefore, it
is unsurprising that deep learning has quickly been adopted in
medical informatics research. For example, Shin et al. [105]
presented a combined text-image CNN to identify semantic in-
formation that links radiology images and reports from a typical
picture archiving and communication system hospital system.
Liang et al. [107] used a modified version of CDBN as an ef-
fective training method for large-scale datasets on hypertension,
and Chinese medical diagnosis from a manually converted EHR
database. Putin et al. [108] applied DNNs for identifying mark-
ers that predict human chronological age based on simple blood
tests. Nie et al. [103] proposed a deep learning network for au-
tomatic disease inference, which requires manual gathering the
key symptoms or questions related to the disease.

In another study, Mioto et al. [102] showed that a stack of de-
noising autoencoders can be used to automatically infer features
from a large-scale EHR database and represent patients with-
out requiring additional human effort. These general features
can be used in several scenarios. The authors demonstrated the
ability of their system to predict the probability of a patient de-
veloping specific diseases, such as diabetes, schizophrenia and
cancer. Furthermore, Futoma et al. [109] compared different
models in their ability to predict hospital readmissions based on
a large EHR database. DNNs have significantly higher predic-
tion accuracies than conventional approaches, such as penalized
logistic regression, though training of the DNN models were
not straightforward.

To tackle time dependencies in EHR with multivariate
time series from intensive care monitoring systems, Lipton
et al. [106] employed a LSTM RNN. The reason for using
RNNs is that their ability to memorize sequential events could
improve the modeling of the varying time delays between the
onsets of emergency clinical events, such as respiratory distress
and asthma attack and the appearance of symptoms. In a related
study, Mehrabi et al. [104] proposed the use DBN to discover
common temporal patterns and characterize disease progression.
The authors highlighted that the ability to discern and interpret
the newly discovered patterns requires further investigation.

The motivations behind these studies are to develop gen-
eral purpose systems to accurately predict length of stay, future
illness, readmission, and mortality with the view to improve
clinical decision making and optimize clinical pathways. Early
prediction in health care is directly related to saving patients’
lives. Furthermore, the discovery of novel patterns can result in
new hypotheses and research questions. In computational phe-
notyping research, the goal is to discover meaningful data-driven
features and disease characteristics.

For example, Che et al. [101] highlighted that although DNNs
outperform conventional machine learning approaches in their
ability to predict and classify clinical events, they suffer from
the issue of model interpretability, which is important for clin-
ical adaptation. They pointed out that interpreting individual
units can be misleading and the behavior of DNNs are more
complex than originally thought. They suggested that once a
DNN is trained with big data, a simpler model can be used to
distil knowledge and mimic the prediction performance of the
DNN. To interpret features from deep learning models such as
stacked denoising autoencoder and LSTM RNNs, they use gra-
dient boosting decision trees (GBDT). GBDT are an ensemble
of weak prediction models and in this work they represent a
linear combination of functions.

Deep learning has paved the way for personalized health
care by offering an unprecedented power and efficiency in min-
ing large multimodal unstructured information stored in hos-
pitals, cloud providers and research organization. Although, it
has the potential to outperform traditional machine learning ap-
proaches, appropriate initialization and tuning is important to
avoid overfitting. Noisy and sparse datasets result in consider-
able fall of performance indicating that there are several chal-
lenges to be addressed. Furthermore, adopting these systems
into clinical practice requires the ability to track and interpret
the extracted features and patterns.

E. Public Health

Public health aims to prevent disease, prolong life, and pro-
mote healthcare by analyzing the spread of disease and social
behaviors in relation to environmental factors. Public health
studies consider small localized populations to large popula-
tions that encompass several continents such as in the case
of epidemics and pandemics. Applications involve epidemic
surveillance, modeling lifestyle diseases, such as obesity, with
relation to geographical areas, monitoring and predicting air
quality, drug safety surveillance, etc. The conventional predic-
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tive models scale exponentially with the size of the data and use
complex models derived from physics, chemistry, and biology.
Therefore, tuning these systems depend on parameterizations
and ad hoc twists that only experts can provide. Nevertheless,
existing computational methods are able to accurately model
several phenomena, including the progression of diseases or the
spread of air pollution. However, they have limited abilities in
incorporating real time information, which could be crucial in
controlling an epidemic or the adverse effects of a newly ap-
proved medicine. In contrast, deep learning approaches have a
powerful generalization ability. They are data-driven methods
that automatically build a hierarchical model and encode the in-
formation within their structure. Most deep learning algorithm
designs are based on online machine learning and, thus, opti-
mization of the cost function takes place sequentially as new
training datasets become available. One of the simplest online
optimization algorithms applied in DNNs is stochastic gradient
descent. For these reasons, deep learning, along with recom-
mendation systems and network analysis, are suggested as the
key analysis methods for public health studies [140].

For example, monitoring and forecasting the concentration of
air pollutants represents an area where deep learning has been
successful. Ong et al. [110] reports that poor air quality is re-
sponsible for around 60 000 annual deaths and it is the leading
cause for a number of chronic obstructive pulmonary diseases.
They describe a system to predict the concentration of major air
pollutant substances in Japan based on sensor data captured from
over 52 cities. The proposed DNN consists of stacked Autoen-
coders and is trained in an online fashion. This deep architecture
differs from the standard deep Autoencoders in that the output
components are added gradually during training. To allow track-
ing of the large number of sensors and interpret the results, the
authors exploited the sparsity in the data and they fine-tuned
the DNN based on regularization approaches. Nevertheless, the
authors pointed out that deep learning approaches as data-driven
methods are affected by the inaccuracies and incompleteness of
real-world data.

Another interesting application is tracking outbreaks with so-
cial media for epidemiology and lifestyle diseases. Social media
can provide rich information about the progression of diseases,
such as Influenza and Ebola, in real time. Zhao et al. [116]
used the microblogging social media service, Twitter, to contin-
uously track health states from the public. DNN is used to mine
epidemic features that are then combined into a simulated envi-
ronment to model the progression of disease. Text from Twitter
messages can also be used to gain insight into antibiotics and
infectious intestinal diseases. In [112], DBN is used to cate-
gorize antibiotic-related Twitter posts into nine classes (side
effects, wanting/needing, advertisement, advice/information,
animals, general use, resistance, misuse, and other). To obtain
the classifier, Twitter messages were randomly selected for man-
ual labeling and categorization. They used a training set of
412 manually labeled and 150 000 unlabeled examples. A deep
learning approach based on RBMs was pretrained in a layer-
by-layer procedure. Fine-tuning was based on standard back
propagation and the labeled data. In [114], deep learning is used
to create a topical vocabulary of keywords related to three types

of infectious intestinal disease—campylobacter, norovirus, and
food poisoning. When compared to officially documented cases,
their results show that social media can be a good predictor of
intestinal diseases.

For tracking certain stigmatized behaviors, social media can
also provide information that is often undocumented; Garimella
et al. [115] used geographically-tagged images from Instagram
to track lifestyle diseases, such as obesity, drinking, and smok-
ing, and compare the self-categorization of images from the user
against annotations obtained using a deep learning algorithm.
The study found that while self-annotation generally provides
useful demographic information, machine generated annota-
tions were more useful for behaviors such as excessive drinking
and substance abuse. In [111], a deep learning approach based
on RBMs is designed to model and predict activity level and
prevent obesity by taking into account self-motivation, social
influences and environment events.

There is a growing interest in using mobile phone metadata
to characterize and track human behavior. Metadata normally
includes the duration and the location of the phone call or text
message and it can provide valuable demographic information.
A CNN was applied in predicting demographic information
from mobile phone metadata, which was represented as tem-
poral 2-D matrices. The CNN is comprised of a series of five
horizontal convolution layers followed by a vertical convolution
filter and two dense layers. The method provides high accuracy
for age and gender prediction, whereas it eliminates the need
for handcrafted features [113].

Mining the online data and metadata about individuals and
large-scale populations via EHRs, mobile networks and social
media is a means to inform public health and policy. Further-
more, mining food and drug records to identify adverse events
could provide vital large scale alert mechanisms. We have pre-
sented a few examples that use deep learning for early identifi-
cation and modeling the spread of epidemics and public health
risks. However, strict regulation that protects data privacy lim-
its the access and aggregation of the relevant information. For
example, Twitter messages or Facebook posts could be used
to identify new mothers at risk from postpartum depression.
Although, this is positive, there is controversy associated of
whether this information should become available, since it stig-
matizes specific individuals. Therefore, it has become evident
that we need to strike a balance between ensuring individuals can
control access to their private medical information and provid-
ing pathways on how to make information available for public
health studies [117]. The complexity and limited interpretability
of deep learning models constitute an obstacle in allowing an
informed decision about the precise operation of a DNN, which
may limit its application in sensitive data.

IV. DEEP LEARNING IN HEALTHCARE: LIMITATIONS AND

CHALLENGES

Although for different artificial intelligence tasks, deep
learning techniques can deliver substantial improvements in
comparison to traditional machine learning approaches, many
researchers and scientists remain sceptical of their use where
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medical applications are involved. These scepticisms arise since
deep learning theories have not yet provided complete solutions
and many questions remain unanswered. The following four as-
pects summarize some of the potential issues associated with
deep learning:

1) Despite some recent work on visualizing high level
features by using the weight filters in a CNN [141], [142],
the entire deep learning model is often not interpretable.
Consequently, most researchers use deep learning
approaches as a black box without the possibility to ex-
plain why it provides good results or without the ability
to apply modifications in the case of misclassification
issues.

2) As we have already highlighted in the previous sections,
to train a reliable and effective model, large sets of train-
ing data are required for the expression of new concepts.
Although recently we have witnessed an explosion of
available healthcare data with many organizations start-
ing to effectively transform medical records from paper to
electronic records, disease specific data is often limited.
Therefore, not all applications—particularly rare diseases
or events—are well suited to deep learning. A common
problem that can arise during the training of a DNN (es-
pecially in the case of small datasets) is overfitting, which
may occur when the number of parameters in the network
is proportional to the total number of samples in the train-
ing set. In this case, the network is able to memorize the
training examples, but cannot generalize to new samples
that it has not already observed. Therefore, although the
error on the training set is driven to a very small value,
the errors for new data will be high. To avoid the overfit-
ting problem and improve generalization, regularization
methods, such as the dropout [143], are usually exploited
during training.

3) Another important aspect to take into account when deep
learning tools are employed, is that for many applica-
tions the raw data cannot be directly used as input for the
DNN. Thus, preprocessing, normalization or change of
input domain is often required before the training. More-
over, the setup of many hyperparameters that control the
architecture of a DNN, such as the size and the number
of filter in a CNN, or its depth, is still a blind exploration
process that usually requires accurate validation. Finding
the correct preprocessing of the data and the optimal set
of hyperparameters can be challenging, since it makes the
training process even longer, requiring significant train-
ing resources and human expertise, without which is not
possible to obtain an effective classification model.

4) The last aspect that we would like to underline is that
many DNNs can be easily fooled. For example, [144]
shows that it is possible to add small changes to the in-
put samples (such as imperceptible noise in an image) to
cause samples to be misclassified. However, it is impor-
tant to note that almost all machine learning algorithms
are susceptible to such issues. Values of particular
features can be deliberately set very high or very low
to induce misclassification in logistic regression. Simi-

larly, for decision tress, a single binary feature can be
used to direct a sample along the wrong partition by sim-
ply switching it at the final layer. Hence in general, any
machine learning models are susceptible to such manip-
ulations. On the other hand, the work in [145] discusses
the opposite problem. The author shows that it is possible
to obtain meaningless synthetic samples that are strongly
classified into classes even though they should not have
been classified. This is also a genuine limitation of the
deep learning paradigm, but it is a drawback for other
machine learning algorithms as well.

To conclude, we believe that healthcare informatics today
is a human-machine collaboration that may ultimately become
a symbiosis in the future. As more data becomes available,
deep learning systems can evolve and deliver where human
interpretation is difficult. This can make diagnoses of diseases
faster and smarter and reduce uncertainty in the decision making
process. Finally, the last boundary of deep learning could be
the feasibility of integrating data across disciplines of health
informatics to support the future of precision medicine.

V. CONCLUSION

Deep learning has gained a central position in recent years
in machine learning and pattern recognition. In this paper, we
have outlined how deep learning has enabled the development of
more data-driven solutions in health informatics by allowing au-
tomatic generation of features that reduce the amount of human
intervention in this process. This is advantageous for many prob-
lems in health informatics and has eventually supported a great
leap forward for unstructured data such as those arising from
medical imaging, medical informatics, and bioinformatics. Un-
til now, most applications of deep learning to health informatics
have involved processing health data as an unstructured source.
Nonetheless, a significant amount of information is equally en-
coded in structured data such as EHRs, which provide a detailed
picture of the patient’s history, pathology, treatment, diagnosis,
outcome, and the like. In the case of medical imaging, the cy-
tological notes of a tumor diagnosis may include compelling
information like its stage and spread. This information is bene-
ficial to acquire a holistic view of a patient condition or disease
and then be able to improve the quality of the obtained inference.
In fact, robust inference through deep learning combined with
artificial intelligence could ameliorate the reliability of clinical
decision support systems. However, several technical challenges
remain to be solved. Patient and clinical data is costly to obtain
and healthy control individuals represent a large fraction of a
standard health dataset. Deep learning algorithms have mostly
been employed in applications where the datasets were bal-
anced, or, as a work-around, in which synthetic data was added
to achieve equity. The later solution entails a further issue as
regards the reliance of the fabricated biological data samples.
Therefore, methodological aspects of NNs need to be revisited in
this regard. Another concern is that deep learning predominantly
depends on large amounts of training data. Such requirements
make more critical the classical entry barriers of machine learn-
ing, i.e., data availability and privacy. Consequently, advances
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in the development of seamless and fast equipment for health
monitoring and diagnoses will play a prominent role in future
research. Reference to the issue of computational power, we
envisage that for the years to come, further ad hoc hardware
platforms for neural networks and deep learning processing will
be announced and made commercially available. It is worth not-
ing that the rise of deep learning has been mightily supported by
major IT companies (e.g., Google, Facebook, and Baidu) which
hold a large extent of patents in the field and core businesses
are substantially supported by data gathering, enormous store-
houses and processing machines. Many researchers have been
encouraged to apply deep learning to any data-mining and pat-
tern recognition problem related to health informatics in light of
the wide availability of free packages to support this research.
Looking at it from the bright side, it has fostered an interesting
trend and boosted the expectations of what machine learning
could achieve on its own. Nevertheless, we should not consider
deep learning as a silver bullet for every single challenge set by
health informatics. In practice, it is still questionable whether
the large amount of training data and computational resources
needed to run deep learning at full performance is worthwhile,
considering other fast learning algorithms that may produce
close performance with fewer resources, less parameterization,
tuning, and higher interpretability. Therefore, we conclude that
deep learning has provided a positive revival of NNs and con-
nectionism from the genuine integration of the latest advances
in parallel processing enabled by coprocessors. Nevertheless,
a sustained concentration of health informatics research exclu-
sively around deep learning could slow down the development
of new machine learning algorithms with a more conscious use
of computational resources and interpretability.
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