Pattern Recognition Homework #5

1. Let x have an exponential density

$$\mathbf{p}(\mathbf{x}|\boldsymbol{\theta}) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & oh \mathbf{terw} \, \mathbf{s}e \end{cases}$$

Suppose that n samples $x_1, ..., x_n$ are drawn independently according to $p(x|\theta)$. Show that the maximum likelihood estimate for θ is given by

$$\hat{\theta} = \frac{1}{\frac{1}{n}\sum_{k=1}^{n} x_k}$$

2. Assume we have training data from a Gaussian distribution of known covariance Σ but unknown mean μ . Suppose that this mean itself is random, and characterized by a Gaussian density having mean m_0 and covariance Σ_0 . What is the MAP estimator for μ ? Express your answer using "arg *m ax*" with respect to the parameter. Do not need to solve, but explain your answer.