Component Analysis (DHS 10.13)

- Find the right features from given data, in general without any priori information
- Unsupervised approach
- Two popular techniques: Principle Component Analysis and Independent Component Analysis

Principle Component Analysis (DHS 10.13.1)

- A popular technique to project d-dimensional data onto a lower-dimensional subspace in a sum-squared error sense.
- Known also as Karhunen-Loeve Transformation,
- Used in exploratory data analysis
- Uses Eigen Decomposition ($M = V\Sigma V^*$) or Singular Value Decomposition ($M = U\Sigma V^*$).
- Steps
 - Compute d-dimensional mean vector μ and dxd covariance matrix, Σ from data.
 - Compute eigenvectors and eigenvalues from the covariance matrix

$$D = V^{-1} \Sigma V$$

where D is the diagonal matrix of eigenvalues of Σ . The matrix V holds eigenvectors that diagonalizes the covariance matrix Σ .

or

Compute eigenvectors and eigenvalues from the characteristic equation (DHS A.2) Given a dxd matrix, M, $Mu = \lambda u$

where $u = e_i$ eigenvectors and λ_i associated eigenvalues.

Solve
$$|M - \lambda I| = \lambda^d + a_1 \lambda^{d-1} \dots + a_{d-1} \lambda + a_d = 0$$
 for each of its d roots λ_j .

For each root solve for eigenvector e_i .

Trace
$$tr[M] = \sum_{i=1}^{d} \lambda_i$$
 and Determinent $|M| = \prod_{i=1}^{d} \lambda_i$

- Eigenvector indicate the axis
- Eigenvalue indicate the amount of variance explained by the axis.
- Sort eigenvectors and eigenvalues in a descending order.
- \blacksquare Choose *k* eigenvalues and vectors of the large values.
- Generally speaking, with k dimensionality, the signal subspace can be governed. The rest d k dimensions generally contain noises.
- Form a $d \times k$ matrix A whose column consists of the k eigenvectors.
- Re-represent the data by principal components consists of projecting the data onto the k-dimensional subspace $x' = A^T(x \mu)$

