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Abstract. Two-dimensional gel electrophoresis (2DGE) is a technique to
separate individual proteins in biological samples. The 2DGE technique
results in gel images where proteins appear as dark spots on a white back-
ground. However, the analysis and inference of these images get compli-
cated due to 1) contamination of gels, 2) superposition of proteins, 3) noisy
background, and 4) weak protein spots. Therefore there is a strong need for
an automatic analysis technique that is fast, robust, objective, and auto-
matic to find protein spots. In this paper, to find protein spots more accu-
rately and reliably from gel images, we propose Reversible Jump Markov
Chain Monte Carlo method (RJMCMC) to search for underlying spots
which are assume to have Gaussian-distribution shape. Our statistical
method identifies very weak spots, restores noisy spots, and separates
mixed spots into several meaningful spots which are likely to be ignored
and missed. Our proposed approach estimates the proper number, centre-
position, width, and amplitude of the spots and has been successfully ap-
plied to the field of projection reconstruction NMR (PR-NMR) processing
[15,16]. To obtain a 2DGE image, we peformed 2DGE on the purified mi-
tochondiral protein of liver from an adult Sprague-Dawley rat.

1 Introduction

Recent advances in proteomics play a key role in life science by identifying and
characterizing overall proteins, and provide insights of disease and drug inter-
actions. 2DGE is a widely used technique to analyze the protein complexes in
proteomics and bioinformatics [11,8]. The two dimensions in 2DGE correspond
to isoelectric point and mass: the isoelectric point separates the proteins in terms
of a gradient of pHs, and the mass according to the weights of proteins. 2DGE
yields an image representing the distribution of protein spots.

The 2DGE image analysis includes spot detection, segmentation, characteri-
zation, quantification, and etc. However, such analysis are complicated for the
following reasons. First, there may be weak and small spots which are not be
detected. Second, spots can be superimposed. These mixed spots are hard to
separate by inspection or many deterministic approaches and the mixed spots
are often likely to be regarded as one big spot. Even though interesting spots
are clearly visible, it is difficult to recognize them if they are mixed with other
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spots. Finally, there are spots not discernible from background noise. Spots in
2DGE image may be corrupted by two kinds of noise: global noise and local
noise. Global noise is a background noise which has a specific pattern. Local
noise effects the intensity of a pixel or a small area of image. Thus, we may have
to restore images and find important spots with careful consideration of noise.

Many researchers have been worked on 2DGE image processing and analysis
using several methods such as filtering in the wavelet domain [12], watershed tech-
niques [14] and pixel value collection [10]. However, they are not good enough in
noisy images and produce only limited results such as segmentation or quantifica-
tion. In this paper, we tackle these problems by applying Reversible Jump Markov
Chain Monte Carlo (RJMCMC) [2,7]. This method has been successfully applied
to Projection-reconstruction NMR (PR-NMR) to reconstruct NMR spots in 2D
signals [15,16]. Our application of RJMCMC to 2DGE attempts to subtract back-
ground noise from the image to enhance weak spots. That is, RJMCMC searches
for weak spots which are likely to be ignored due to their weakness. The method
also finds the proper number of spots automatically, restores the noisy images,
and unmixes spots into more meaningful ones. In modeling of spots, we assumed
Gaussian shape, as applied in other studies [13,9]. The assumption of such a spe-
cific shape of a spot has a significant benefit in that, since it is robust against local
noise, we can estimate the signals based on interesting areas rather than each pixel.
In our proposed RJMCMC method, we have incorporated the following charac-
teristics to meet the requirements of gel image analysis: dimension invariant and
moves in birth, death, split, and merge.

This paper consists of three main parts. In the first part, we present the math-
ematical model for 2D gel electrophoresis. Next, we describe the main algorithms
for RJMCMC. Finally, the synthetic and experimental results from RJMCMC
are demonstrated.

2 Model for 2D Gel Electrophoresis

As shown in Fig. 3, a typical 2D gel image contains numerous protein spots
which might be individual or mixed. Therefore in our study, we model the image
as a mixture of spots with Gaussian profile as follows:

I(x) =
K∑

k=1

Akφk(x; μk, Σk) + εe(x) (1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = [x1, x2]T

μk = [μk,1, μk,2]T

φk(x; μk, Σk)
= 1√

2πΣk
exp

{
− 1

2 (x1 − μk)T Σ−1
k (x − μk)

}

Σk = diag(σ2
k,1, σ

2
k,2)

εe(x) ∼ N(εe(x); μe, σ
2
e)

where I(x) is the intensity at position x of the image. Ak is the amplitude of each
spot, and φk(x; μk, Σk) denotes the radial functions with a specific shape such
as Gaussian, Lorentzian, or Laplacian shape. In this paper, we use a Gaussian
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Fig. 1. Combination of radial functions: 4 different radial images with a spot are com-
bined after multiplying their amplitudes - all images are vectorized in the linear model

shape for each spot. The radial function for each spot consists of two components,
centre position μk and width of the spot σk. We assume that all spots have
different spot widths and each spot has different spot width in terms of the
x1 and x2 axes. εe(x) is a white noise, at position x, which is generated from
normal distribution with a mean μe and a standard deviate σe. N denotes a
normal distribution. RJMCMC estimates the μe and σe during its simulation
automatically. Eq. (1) is well represented by Fig. 1.

In practice, Eq. (1) may be written in the linear model framework as follows:

Y = XA1:K + εe where εe ∼ N(εe; μe, σ
2
eI) (2)

A1:K = [A1, A2, · · · , AK ] is a vector for amplitudes of spots. X and Y are built
from Eq. (1) by assembling all intensities I(x) into a vector Y . That is, Y is a
vector of noisy image intensities. X is defined by [X1, X2, · · · , XK ]T where Xk

is a vector made up from the image profile of spot k.
Denote by θk ∈ Θk, the parameter vector associated with the model indexed

by k ∈ κ. Then, the priors are defined as

θ1:K = (μ1:K , A1:K , σ1:K) (3)

where
{

μ1:K = (μ1,1:K , μ2,1:K)
σ1:K = (σ1,1:K , σ2,1:K)

Ak
iid∼ N(Ak; μA, σ2

A)

μ1,k
iid∼ U(μ1,k; 0, T1) μ2,k

iid∼ U(μ2,k; 0, T2)

σ1,k
iid∼ G(σ1,k; α, β) σ2,k

iid∼ G(σ2,k; α, β)

where k = 1, 2, · · · , K and K ∈ {0, · · · , Kmax}. T1 and T2 are the size of an image.
N, U and G stand for the normal, uniform, and gamma distributions respectively.
α and β are assumed known. μA and σA are estimated during simulation.
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Now, we may remove nuisance parameters A1:K by linear analytical integra-
tion since A1:K are assumed linear Gaussian,

P (μ1:K , σ1:K |Y ) =
∫

P (μ1:K , σ1:K , A1:K |Y )dA1:K (4)

The removal of the nuisance parameters makes RJMCMC more efficient (Rao-
Blackwellization) [3] . The removed nuisance parameters A1:K are sampled from
their full conditional P (A1:K |μ1:K , σ1:K , Y ), when required for estimation.

2.1 Likelihood

Marginalising the nuisance parameters, the likelihood is defined as follows:

P (Y |X, μA, ΣA, Σe) =
1

(2π)(T1T2)/2|Σe|1/2|ΣA|1/2|Φ|1/2 (5)

× exp
{

−1
2
(Y

′T Σ−1
e Y

′
+ μT

AΣ−1
A μA − ΦT Â)

}

where

⎧
⎪⎪⎨

⎪⎪⎩

Â = Φ−1φ
Φ = XT Σ−1

e X + Σ−1
A

φ = XT Σ−1
e Y

′
+ Σ−1

A μA

Y
′
= Y − μe

where ΣA = σ2
AI and Σe = σ2

eI respectively.

3 Algorithms

Since one does not know the exact number of spots in a given image, the number
must be estimated during the processing. That is, to calculate the proper number
of spots is equivalent to estimate the exact dimension of the parameters as
they are proportional to each other. This kind of problem is addressed in trans-
dimensional approaches. One of the best known trans-dimensional approaches
is a generalization of Markov Chain Monte Carlo method, so called Reversible
Jump Markov Chain Monte Carlo method (RJMCMC) [2,7]. RJMCMC proposes
a next state given by current state in the time series and it constraints on
Markov chains. In this paper, RJMCMC has several moves to find parameters of
interests and their dimensions: Birth, Death, Split, Merge, and invariant moves.
The next image is proposed from the current image via these moves. The Birth
move makes a new spot in the current image randomly in terms of a given
proposal distribution. The Death move deletes an existing spot in the current
image. Birth and Death moves are designed to satisfy reversibility conditions.
The Split move divides a spot in the current iteration into two different spots
in the next iteration. Conversely, Merge move makes two selected spots in the
current iteration into a single spot in the next iteration. Split and Merge moves
have reversibility conditions as for Birth and Death moves [2]. The last move
is a dimension invariant move, i.e. it does not change the dimension of the
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parameters. Instead, each parameter is sampled by a standard Markov Chain
Monte Carlo (MCMC) step.

RJMCMC for 2D gel electrophoresis image has the following procedure in this
paper:

– Propose a type of move from Birth, Death, Split, Merge, and Dimension
invariant.

– If the move type is Dimension invariant, RJMCMC samples parameters us-
ing a standard Metropolis-Hastings (MH) algorithm, so that each unknown
parameter is updated according to an acceptance probability.

αK = min
{

1,
P (Y |θ′

1:K)P (θ
′

1:K)q(θ1:K ; θ
′

1:K)
P (Y |θ1:K)P (θ1:K)q(θ′

1:K ; θ1:K)

}
(6)

– If the move type is one of Birth, Death, Split, and Merge, RJMCMC follows
a generalized MH step with an acceptance probability.

αK′ = min
{

1,
P (Y |K ′

, θ
′

1:K′ )P (K
′
)P (θ

′

1:K′ |K
′
)q1(K; K

′
)q2(θ1:K ; θ

′

1:K′ )
P (Y |K, θ1:K)P (K)P (θ1:K |K)q1(K

′ ; K)q2(θ
′

1:K′ ; θ1:K)

}

(7)

3.1 Dimension Invariant Move

RJMCMC is the same as standard MCMC in the case of Dimension invariant
moves in that the dimension is fixed in Eq.(6). The Dimension invariant move
samples two types of parameters, μ1:K and σ1:K . The prior structure of θ1:K is
assumed to be P (θ1:K) =

∏K
k=1 P (μk)P (σk)P (Ak), see Eq. (4) The kernel func-

tion q(θ
′

1:K ; θ1:K) proposes parameters using a Metropolis Hastings algorithm
within the Gibbs method:

Dimension invariant Move

– Propose new parameters θ
′

1:K .
• μ

′

1:K ∼ N(μ
′

1:K ; μ1:K , γ2I)
• σ

′

1:K ∼ G(σ
′

1:K ; α, β) where α and β are known.
– Calculate likelihood from Eq. (5).
– Obtain αK from Eq. (6).
– u ∼ U(u; 0, 1)
– if αK > u, then

• Accept the proposed parameters and replace them by the current
parameters.

– else
• Reject the proposed parameters and maintain the current parame-

ters.



348 J.W. Yoon et al.

3.2 Other Moves: Birth, Death, Split, and Merge Moves

In Eq. (7), the prior distribution for the dimensionality, P (K) is assumed uni-
form. From experience, convergence is rather slow when μ1:K and σ1:K are up-
dated jointly. Thus, only μ1:K is sampled in the dimension variant moves (but
σk is also proposed from the prior in the Birth move for a new spot) and σ1:K
is updated in the dimension invariant move. These four moves assume the prior
distribution P (μ1:K |K) is a uniform distribution.

The kernel functions for dimension, q1(K
′ |K), and parameters, q2(θ

′

1:K′ |θ1:K)
are designed as follows in Birth and Death moves. The Birth move creates a new
spot so that q(K

′
= K + 1|K) = 1. The Death move however selects a spot

randomly to delete among the K existing spots in the current step. Hence, the
proposal probability of dimension for the death move is q(K

′
= K−1|K) = 1/K.

In the Birth move, the new spot K
′
is proposed from the prior, i.e. q(μ

′

k, σ
′

k) =
p(μ

′

k, σ
′

k).

Birth move

– μK′ and σK′ are proposed for spot position and width.
– Calculate likelihood from Eq. (5).
– Obtain αK′ in Eq. (7).
– Let u ∼ U(u; 0, 1)
– if αK′ > u, then

• Accept the proposed parameters and replace them by the current
parameters.

– else
• Reject the proposed parameters and maintain the current parame-

ters.

Death move

– Select one among K spots and remove it.
– Calculate likelihood from Eq. (5).
– Obtain αK′ in Eq. (7).
– u ∼ U(u; 0, 1)
– if αK′ > u, then

• Accept the proposed parameters and replace them by the current
parameters.

– else
• Reject the proposed parameters and maintain the current parame-

ters.

The Split and Merge moves are related in a similar way. The first transition
kernel function q1(K

′ |K) is defined to be 1/K for both moves. The Split move
divides a single spot, randomly chosen from the K existing spots, into two spots.
In the Merge move, a single spot is randomly chosen and merged with its closest
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neighbours. The Split kernel for q2(θ
′

1:K′ |θ1:K) divides spot k into spots k and
m, as follows:

μ
′

m ∼ q2(μ
′

m|μk) = N(μ
′

m; μk, λ)

μ
′

k ∼ q2(μ
′

k|μk) = N(μ
′

k; μk, λ)

where λ is assumed known. The Merge Kernel for q2(θ
′

1:K′ |θ1:K) combines a spot
k with its the nearest neighbour m, as follows:

μ
′

k ∼ q2(μ
′

k|μm, μk) = N(μ
′

k; μ̄, ν)

where
{

μ̄ = μm × ωm + μk × ωk

ωm = Am

Am+Ak
, ωk = Ak

Am+Ak

(8)

where ν is assumed known. In both moves, σk parameters are proposed from the
prior.

Split move

– Select one among K spots and divide it into two spots in Eq. (8)
– Calculate likelihood from Eq. (5).
– Obtain αK′ as in Eq. (7).
– u ∼ U(u; 0, 1)
– if αK′ > u, then

• Accept the proposed parameters and replace them by the current
parameters.

– else
• Reject the proposed parameters and maintain the current parame-

ters.

Merge move

– Select one among K spots and search for its closest neighbour.
– Merge the two selected spots from Eq. (8)
– Calculate likelihood from Eq. (5).
– Obtain αK′ in Eq. (7).
– u ∼ U(u; 0, 1)
– if αK′ > u, then

• Accept the proposed parameters and replace them by the current
parameters.

– else
• Reject the proposed parameters and maintain the current parame-

ters.

Owing to the non-unique labeling of individual spots in the model Eq. (1), it
is likely that spots become re-ordered during sampling, especially in a RJMCMC
procedure where spots can be detected or added at each iteration. In order to
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Fig. 2. A synthetic image with 4 spots : a pure image (a), a noisy image (b), an
estimated image by RJMCMC (c)

address this labeling problem, we run a fixed dimensional RJMCMC with invari-
ant moves after variant dimensional RJMCMC. That is, the variant dimensional
RJMCMC generates the number of spots and the initial parameters for the fixed
dimensional RJMCMC (see e.g. [5] for a detailed theoretical treatment of such
issues).

4 Results

4.1 Synthetic Data

We tested RJMCMC performance on a synthetic image in Fig. 2. The first syn-
thetic image has 4 spots, one very large spot and three overlapping spots. All
spots have a Gaussian shape defined by centre position, width, and amplitude
of the spot. The size of this image is 32 by 32. White Gaussian noise is added to
the pure image with mean 2 and standard deviation 0.5. 2000 iterations are per-
formed to address this problem including 1000 burn-in and 1000 for estimation.
The estimated mean of noise is 2.0364. The left, centre and right figures denote
a pure image without noise, corrupted image with noise generated by μ = 2 and
σ = 0.5 and a restored image from RJMCMC. The error is calculated by

ε = ||Ŝ − S||, (9)

where Ŝ and S are the estimated image from RJMCMC and the original image
without noise. We obtain ε = 1.8422 after simulation for the first synthetic data
set.

4.2 Experimental Data

To obtain experimental 2DGE images, we performed 2DGE on the purified mi-
tochondiral protein of liver from an adult Sprague-Dawley rat. Fig. 3 shows that
the resultant GE images present numerous protein spots.

We used two different concentrations of the sample and the images (a) and
(b) of the figure show the results of 100μg and 200μg respectively. As we can
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1

2

a) b )

Fig. 3. Two gel images with a protein sample of 100μg (a) and 200μg (b): two rectangles
(1 and 2) of the left image are used to search for the underlying spots such as weak
spots and mixed spots in a mixed shape spot using RJMCMC

a ) b )

Fig. 4. Detection by commercial software (Imagemaster 2D elite software v3.1 ) for two
gel images with a protein sample of 100μg (a) and 200μg (b)

see, the GE image (b) reveals more spots and much clearer than the image (a)
due to the higher concentration which we intend to use in our evaluation and
validation of the proposed methodology for detecting and identifying the spots.

To make a comparison against our proposed technique, the GE images in Fig. 3
were analyzed using a commercial gel image analysis software, Imagemaster 2D
elite software v3.1 [6]. The images in Fig. 4 show the detected spots from each
image. It is clear that there are more spots detected in (b).

For the RJMCMC image analysis, we selected the identical two sub-images
from Fig. 3 (a) with the lower concentration as indicated in the figure with
boxes. Before applying the RJMCMC, to remove the local variations or noise in
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Fig. 5. Subtracting background noises: raw image (a), subtracted background noise
(b), and extracted image (c)

Fig. 6. Three images for the first example: a raw image (a), a filtered image without
background noise (b) and a sample image in RJMCMC run (c)

the gel image, which creates a discrepancy between the real GE image and the
theoretical model in Eq. (1), we used a simple approach, local mean removal, in
which the average pixel intensity in local areas is removed [1]. Fig. 5 shows an
example of local background noise removal. The RJMCMC was applied to the
local noise-removed images with 10000 iterations including 5000 sampling and
5000 burn-in for sub-images. After the RJMCMC simulation, we run the fixed
dimensional MCMC with 10000 iterations including 5000 sampling and 5000
burn-in for the labeling of the spots.

Fig. 6 and 8 show the steps of our RJMCMC algorithm. The image (a)s
are selected from original 2DGE and the image (b)s are resulant images after
removing background noise. The image (c)s are averaged images of samples from
RJMCMC analysis. One can clearly notice that the RJMCMC generated images
reveal potential spots with much better clarity. Furthermore, the RJMCMC
generates statistical inferences to these spots.

Fig. 7 and 9 show the comparisons of the RJMCMC-inferenced spots against
the detected spots by the commercial software. We used threshold to plot circles
for the spots over 2.5 and 5 of the amplitudes (intensities) for Fig. 7 and 9
respectively.
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Fig. 7. comparison of detection for the first example: detection by commercial soft-
ware for 100μg (a), detection by commercial software for 200μg (b) and detection by
RJMCMC method for 100μg (c)
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Fig. 8. Three images for the second example: a raw image (a), a filtered image without
background noise (b) and a sample image in RJMCMC run (c)

Fig. 7 demonstrates that the RJMCMC can detect even very weak spots
which would be unlikely to be detected in the conventional approaches. Note
that the RJMCMC was applied to the gel image with a protein sample of 100μg.
The RJMCMC inferences numerous spots, as shown in Fig. 7 (c), that are not
detected by the conventional software as in Fig. 7 (a). For instance Spot no.
5 and 10 are detected by the RJMCMC, but they are not detected in the (a),
the lower concentration GE image. However, the higher concentration GE image
confirms the presence of the spot in Fig. 7 (b). For Spot no. 2 and 7, the same
spot has been detected in all three images, but the RJMCMC indicates the spots
are composed of two spots. Additionally the RJMCMC indicates there could be
more spots which are not visible in (a) and (b). It is not clear at the moment
whether those RJMCMC inferenced weak spots are real or artificial, but it is
clear that RJMCMC provides much higher sensitivity toward the detection of
possible protein spots.

The results in Fig. 9 show the analysis of the mixed or overlapped spot in
the selected region. The conventional software cannot separate the mixed and
cannot give information about the possible individual profiles in both the low
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Fig. 9. comparison of detection for the second example: detection by commercial soft-
ware for 100μg (a), detection by commercial software for 200μg (b) and detection by
RJMCMC method for 100μg (c)

Table 1. Spot information for the first sub-image generated from RJMCMC

num position position width width amplitude
(row) (col) (row) (col)

1 45.5077 46.0000 1.8687 3.1683 3.5181
2 14.1045 35.8273 2.4262 1.5338 17.4910
3 5.6448 21.9955 2.1765 1.5216 10.8062
4 39.3266 28.0185 1.9230 1.6635 10.0152
5 18.8038 13.2272 2.1765 1.5122 9.8300
6 0 7.6177 2.2833 5.0953 15.3704
7 15.5598 38.6679 1.8768 3.0360 4.5647
8 33.2575 33.6518 2.1495 1.6844 2.6860
9 2.1577 11.9763 1.6069 1.8371 5.2277
10 1.0237 29.9370 1.6547 2.3283 3.3920

and high concentration GE images. Whereas the RJMCMC method may resolve
each clustered spot into several individual spots as shown in (c).

Finally, our RJMCMC method generates the databases which are shown in
Table. 1 and 2. Each table has six columns: index number, position for row,
position for column, width for row, width for column and amplitude (intensity)
of spots. As we can see in Tables, the amplitudes (intensities) of spots vary from
2.6 to 17.4 and from 5.7 to 503.9 for the Table. 1 and 2 respectively.

5 Conclusions

RJMCMC for 2DGE image analysis has two salient products: restoration and
spot finding. 2DGE images suffer from high levels of noise yet RJMCMC extracts
the real spots of interest under the assumption of a Gaussian spot shape. This
assumption for spot shape implies strong prior information and makes RJMCMC
robust against random noise. Another benefit of RJMCMC 2DGE processing
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Table 2. Spot information for the second sub-image generated from RJMCMC

num position position width width amplitude
(row) (col) (row) (col)

1 13.0000 23.0000 2.3559 3.0044 192.5783
2 13.0035 20.0101 1.9893 2.1364 182.8023
3 11.6072 22.8732 1.5061 1.5269 358.6255
4 14.0000 22.0000 3.7394 2.7883 218.3849
5 13.5044 6.5399 2.2925 1.6172 75.2568
6 5.9919 12.9131 2.3382 1.9234 22.7709
7 15.0118 5.0023 1.8144 2.1599 10.4090
8 12.2408 2.1442 2.4446 2.0642 8.5309
9 3.0066 17.4009 1.7251 1.5914 11.7475
10 3.8674 21.2892 1.6920 1.5663 9.8358
11 18.1904 11.8794 1.6128 1.5320 5.7568
12 15.0298 22.8203 1.8769 1.6150 503.9675

is that complicated spots in 2DGE from protein complexes are separated into
several small spots. Moreover, the RJMCMC finds some extremely weak spots,
based on Gaussian spot shape assumption, which many threshold approaches fail
to detect. In addition, RJMCMC does not require that the number of spots be
fixed: RJMCMC based on Monte Carlo methods searches for the proper number
of spots automatically. However, the radial functions are expressed by rather
large matrices, so if there are many spots in the image of interest, RJMCMC for
2DGE can be a time consuming method and possibly impracticable. Also, if the
spot shape is very different from a Gaussian shape, RJMCMC in this paper will
tend to generate many small Gaussian shaped spots to model the non-Gaussian
spot. That is, we note that the proper spot finding may fail for non-Gaussian
shaped spots. However, restoration can work even in the case of non-Gaussian
spots since the overall restored shape may still be well modelled.

6 Further Work

We present the possibility of RJMCMC to process and analyze 2DGE images
with a Gaussian spot shape assumption. However, it is known that the actual
shape for 2DGE is non-Gaussian and non-Lorentzian. Therefore, we will incorpo-
rate more realistic shapes into the 2DGE image and this will give better Bayesian
model for RJMCMC (see spots in Fig. 3). One limitation of RJMCMC for prac-
tical use is its computation time. At present, it takes 60 minutes with 10000
iterations on a Pentium CPU at 3.20GHz for the first experimental example.
To make RJMCMC more practicable, sub-sampling will be applied. Next, we
aim to research labeling of the spots from the RJMCMC output. Last, we will
improve more sophisticated algorithms for the background subtraction as shown
in Lepski’s paper [4].
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