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Mixture Densities (DHS 10.2)

— Assume the samples were obtained by selecting a state of nature S; with probability
P(S;) and then selecting an x according to the probability law p(x[S;,0;).

— Thus we know the complete probability structures for the problem, except some
parameters

— Look at the given assumptions in DHS 10.2:

The samples come from a known number c of classes

The prior probabilities P(S;) for each class was known

The forms for the class-conditional probability densities p(x|S;, 6;) are known

The values for the ¢ parameter vectors are unknown

The category labels are unknown.

— Probability density function of the sample is given by
J

p(x10)=>" p(x|S;,0)P(S))

=
— This form is called mixture density
= p(x]S;,0;) = component densities
= P(S;j) = prior probabilities or mixing parameters
— What is unknown? Only the parameters 0
— Completely unidentifiable if we cannot recover a unique parameters 0

— Mixture densities of normal densities are usually identifiable
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Maximum-Likelihood Estimates (DHS 10.3)

10.3 Maximum-Likelihood Estimates

Suppose now that we are given a set D = {x;,...,Xy} of n unlabeled samples drawn
independently from the mixture density

p(x(6) = p(x|w;, 0;) P(w;), (1)
j=1

where the full parameter vector 0 is fixed but unknown. The likelihood of the observed
samples is, by definition, the joint density

p(D|6) = [ p(x[6). (3)
k=1

The maximum-likelihood estimate @ is that value of @ that maximizes p(D|0).

If we assume that p(D|@) is a differentiable function of 8, then we can derive some
interesting necessary conditions for 0. Let [ be the logarithm of the likelihood, and
let Vo‘l be the gradient of [ with respect to 8;. Then

1= In p(x.[6) @)

k=1
and

n 1 c
Voil — kz=1 p(Xk|0)V0' [;p(xkleeoj)P(wj)

If we assume that the elements of 8; and 6, are functionally independent if i # j, and
if we introduce the posterior probability

P(xklwnoi)P(Wi)
2or0) ©

we see that the gradient of the log-likelihood can be written in the interesting form

P(w;|xk,8) =

Vg, =) P(wilxx,0)Vg In p(xk|w,8:). (7)
k=1
Since the gradient must vanish at the value of 8; that maximizes [, the maximum-
likelihood estimate @; must satisfy the conditions

P(wi|xk,0)Vg In p(xijw:,0:;) =0, i=1,....c. (8)
k=1
Among the solutions to these equations for 0; we may find the maximum-likelihood
solution.
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Application to Normal Mixtures (DHS 10.4)

— Three cases for Gaussian mixture

“x” indicates the parameters are known.

Case 1: The simplest, unknown mean vectors (given in DHS 10.4.1, solved in the class)
Case 2: More realistic (discussed in DHS 10.4.2 but, not handled here)

Case 3: A completely unknown set of data. This cannot be solved by ML (not handled
here)

10.4.1 Case 1: Unknown Mean Vectors

If the only unknown quantities are the mean vectors p,;, then of course 8; consists of
the components of p,. Equation 8 can then be used to obtain necessary conditions
on the maximum-likelihood estimate for p;. Since the likelihood is

In p(x|w;, ;) = —In [(QW)"""'lezll""""] - é(x — 1) B (x = ), (14)
its derivative is

Vi, In p(x|ws, pt;) = ;7' (x — ;). (15)

Thus according to Eq. 8, the maximum-likelihood estimate fi; must satisfy

Z P(wi|xg, )B7 (x5 — f1;) =0, where jt = (fi,, ..., i) (16)
k=1

After multiplying by ¥; and rearranging terms, we obtain the solution:

-
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P(,u,|xk.[1.)xk
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Case 1: Unknown Mean Vectors (DHS 10.4.1)
DHS 10.4.1 Egs. (14)-(17).
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- Example 1: Mixture of two 1D Gaussians

Example 1: Mixtures of two 1D Gaussians

To illustrate the kind of behavior that can oceur, consider the simple two-component
one-dimensional normal mixture:

1
plz|p1,p2) = ‘/Q—QXP[ 2(-1' H1) ] 3\/_9‘(])[

;aJ 1 [

where w; denotes a Gaussian component. The 25 samples shown in the table were
drawn sequentially from this mixture with gy = —2 and ps = 2. Let us use these
samples to compute the log-likelihood function

p1,pa) = 3 In p(zklpr, pa)

k=1

for various values of y; and ps. The bottom figure shows how [ varies with gy and ps.
The maximum value of [ oceurs at ji; = —2.130 and ji, = 1.668, which is in the rough
vicinity of the true values puy = —2 and po = 2. However, [ reaches another peak of
comparable height at 4y = 2.085 and s = —1.257. Roughly speaking, this solution
corresponds to interchanging py and ps. Note that had the prior probabilities been
equal, interchanging gy and ps would have produced no change in the log-likelihood
function. Thus, as we mentioned before, when the mixture density is not identifiable,
the maximum-likelihood solution is not unique.

k Ik w1 w9 k Ik wi wo k Lk w1 w9
11 0.608 X 9 1 0.262 X 17 ] -345%8 | x
21-1.590 | x 10| 1.072 X 18 | 0.257 X
31 0235 X 11| -1.773 | x 19 | 2.569 X
4| 3.949 X 12 | 0.537 X 20 [ 1.415 X
51-2249 | x 13| 3.240 X 21 | 1.410 X
6| 2.704 X 14| 2.400 X 22 [ -2.653 | x
T|-2473 | x 15 | -2.499 | x 23 | 1.396 X
81 0.672 X 16 | 2.608 X 24 | 3.286 X
25 | -0.712 | x

Additional insight into the nature of these multiple solutions can be obtained by
examining the resulting estimates for the mixture density. The figure at the top
shows the true (source) mixture density and the estimates obtained by using the two
maximum-likelihood estimates as if they were the true parameter values. The 25
sample values are shown as a scatter of points along the abscissa — w; points in
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black, wo points in red. Note that the peaks of both the true mixture density and
the maximum-likelihood solutions are located so as to encompass two major groups
of data points. The estimate corresponding to the smaller local maximum of the log-
likelihood function has a mirror-image shape, but its peaks also encompass reasonable
groups of data points. To the eye, neither of these solutions is clearly superior, and
both are interesting.

Iy
T8
Hmu’;"

(Above) The source mixture density used to generate sample data, and two maximum-
likelihood estimates based on the data in the table. (Bottom) Log-likelihood of a
mixture model consisting of two univariate Gaussians as a function of their means,
for the data in the table. Trajectories for the iterative maximum-likelihood estimation
of the means of a two-Gaussian mixture model based on the data are shown as red
lines. Two local optima (with log-likelihoods -52.2 and -56.7) correspond to the two
density estimates shown above.



