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Introduction

Data clustering concerns how to group a set of objects based on their

similarity of attributes and/or their proximity in the vector space.

Main methods
» Partitioning : K-Means...
» Hierarchical : BIRCH,ROCK,...
» Density-based: DBSCAN,...

A good clustering method will produce high quality clusters with

> high intra-class similarity: cohesive within clusters

> low inter-class similarity: distinctive between clusters
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Clustering Algorithms

A. Distance and Similarity Measures

B. Hierarchical Clustering

— Agglomerative
Single linkage, complete linkage, group average linkage, median linkage,
centroid linkage, balanced iterative reducing and clustering using
hierarchies (BIRCH), clustering using representatives (CURE), robust
clustering using links (ROCK)

— Divisive

divisive analysis (DIANA), monothetic analysis (MONA)



Hierarchical Clustering

M

Agglomerative [ p.q,r,s,t ]

Divisive NP

Agglomerative clustering treats each data point as a singleton cluster, and
then successively merges clusters until all points have been merged into a
single remaining cluster. Divisive clustering works the other way around.



Distance and Similarity Measures

SIMILARITY AND DISSIMILARITY MEASURE FOR QUANTITATIVE FEATURES

Measures

Forms

Comments Examples and
Applications
Metric. Invariant to any translation and rotation | Fuzey c-means with
Minkowski . ( ey only for n=2 (Euclidean distance). Features | measurcs based on
distance D, :LZ‘I” _-‘ﬂ| ] with large values and variances tend to | Minkowski  family
4 dominate over other features. [130].
The most commonly used metric. Special case | K-means algorithm
Euclidean d .- of Minkowski metric at n=2. Tend to form | [191]
distance Dy 2[2 X Xy ] hyperspherical clusters.
] Special case of Minkowski metric at n=1. | Fuzzy ART [57]
City-block D, = §|x,, = ‘H‘ Tend to form hyperrecutangular clusters.
distance }

Sup distance

Drr' :mi} i "er|

Special case of Minkowski metric at # - oo .

Fuzzy c-means with
sup norm [39].

Tq-l ST T
Do =(x,—x,) 87 (x, —x,} , where S is the within-

Invariant 1o any  nonsingular  lincar
transformation. § 1s calculated based on all

Ellipsoidal ART [13],
Hyperellipsoidal

Mahalancbis : ; objects. Tend to form hyperellipsoidal clusters. | clustering algorithm
distance BEOU] SOVATINCE it When features are not correlated, squared | [194]
Mahalanobis distance is equivalent o squared
Euclidean  distance. May  cause  some
computational burden.
d — _ Mot a metric. Derived from correlation | Widely used as the
Pearson (g =, X — ;) cocfTicient. Unable to detect the magnitude of | measure for
correlation D, =(1=r)/2, where r, = —=L1 = differences of two variables. analyzing gene

ngu -x Py (x,-x,)

expression data [80].

"(x. X))+ (X, —X )" Not a metric. Compute the distance between an | SBKM  (Symmetry-
Point symmetry D, =;T:‘11inw TR P object x, and a reference point x, . 2, is | based K-means)
distance and e Jx, =x)| +||U‘f ™ ’-JI Far i ; ; [264].
minimized when a symmetric pattern exists.
'y Independent of wector length. [nvariant to | The most commonly
Cosine similarity S,_.I. = COsS = i | xl I rotation. but not to linear transformations. used measure in
L document clustering

[261].




Similarity Measurements

s Pearson Correlation
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Similarity Measurements

s Pearson Correlation: Trend
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Similarity Measurements

= Euclidean Distance
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Similarity Measurements

s Euclidean Distance: Absolute difference
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b =0.5a
c=d-02
d(a,b)=2.8025
d(a,c)=1.5875
d(b,3)=3.2211



Similarity Measurements

s Cosine Correlation
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Similarity Measurements

s Cosine Correlation: Trend + Mean
Distance
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Similarity Measurements
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Similarity Measurements

0.03
B
0.02 - e
0.01
|:| =
oot Similar? T
-0.02 L ' l I L | | | I
0 A 10 15 20 25 a0 35 40 45 a0
Craon(@0)==0.1175  d(d,b) =0.0279 C.. (d,b)=0.7544
C rearson(@,C) = 0.1244 d(a,c)=0.0255 C... (d,c)=0.8092
(b,¢)=0.1779 d(b,¢)=0.0236 C.. (b,¢)=0.844

pearson



Taxonomy of Clustering Approaches
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Hierarchical Clustering
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General agglomerative clustering

1) Start with /N singleton clusters. Calculate the prox-
imity matrix for the /N clusters.
2) Search the minimal distance

D(Cy, Cy) = | EE%;}N D(Crm, C1)

where D(x,%) is the distance function discussed be-
fore, in the proximity matrix, and combine cluster Cj
and C; to form a new cluster.
3) Update the proximity matrix by computing the dis-
tances between the new cluster and the other clusters.
4) Repeat steps 2)-3) until all objects are in the same
cluster.



Clustering
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Merge which pair of clusters?

- 4 options or distance functions



Clustering

Single Linkage

Dissimilarity between two clusters =
+ O Minimum dissimilarity between the
members of two clusters



Clustering

Complete Linkage

Dissimilarity between two clusters =
Maximum dissimilarity between the
members of two clusters




Clustering

Average Linkage

Dissimilarity between two clusters =
+ Averaged distances of all pairs of
objects (one from each cluster).



Clustering

Average Group Linkage

Dissimilarity between two clusters =
+ O Distance between two cluster means.



