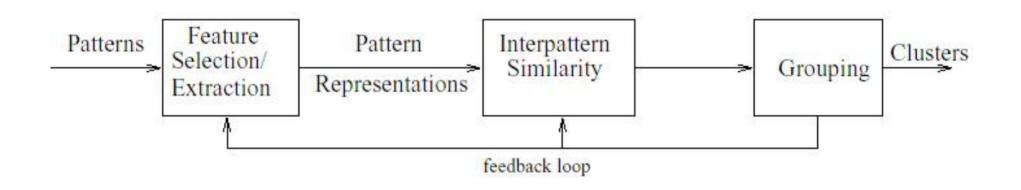
Introduction to Hierarchical Clustering Analysis

Introduction

- Data clustering concerns how to group a set of objects based on their similarity of attributes and/or their proximity in the vector space.
- Main methods
 - > Partitioning : K-Means...
 - > Hierarchical : BIRCH,ROCK,...
 - > Density-based: DBSCAN,...
- A good clustering method will produce high quality clusters with
 - high intra-class similarity: cohesive within clusters
 - Iow inter-class similarity: distinctive between clusters

Stages in Clustering



Clustering Algorithms

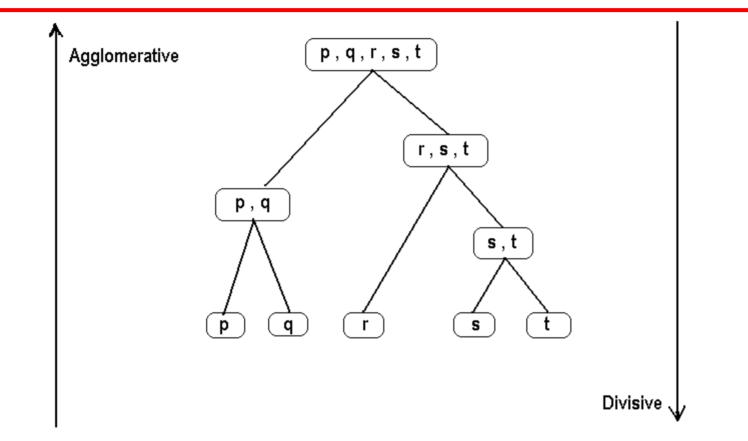
- A. Distance and Similarity Measures
- **B.** Hierarchical Clustering
- Agglomerative

Single linkage, complete linkage, group average linkage, median linkage, centroid linkage, balanced iterative reducing and clustering using hierarchies (BIRCH), clustering using representatives (CURE), robust clustering using links (ROCK)

— Divisive

divisive analysis (DIANA), monothetic analysis (MONA)

Hierarchical Clustering



Agglomerative clustering treats each data point as a singleton cluster, and then successively merges clusters until all points have been merged into a single remaining cluster. Divisive clustering works the other way around.

Distance and Similarity Measures

SIMILARITY AND DISSIMILARITY MEASURE FOR QUANTITATIVE FEATURES

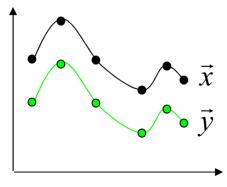
Measures	Forms	Comments	Examples and Applications
Minkowski distance	$D_{ij} = \left(\sum_{l=1}^{d} \left \mathbf{x}_{il} - \mathbf{x}_{jl} \right ^{1/n} ight)^n$	Metric. Invariant to any translation and rotation only for $n=2$ (Euclidean distance). Features with large values and variances tend to dominate over other features.	Fuzzy <i>c</i> -means with measures based on Minkowski family [130].
Euclidean distance	$D_{ij} = \left(\sum_{l=1}^{d} \left x_{il} - x_{jl} \right ^{1/2} \right)^2$	The most commonly used metric. Special case of Minkowski metric at $n=2$. Tend to form hyperspherical clusters.	K-means algorithm [191]
City-block distance	$D_{ij} = \sum_{l=1}^{d} \left x_{il} - x_{jl} \right $	Special case of Minkowski metric at $n=1$. Tend to form hyperrecutangular clusters.	Fuzzy ART [57]
Sup distance	$D_{ij} = \max_{1 \le i \le d} \left x_{il} - x_{jl} \right $	Special case of Minkowski metric at $n \rightarrow \infty$.	Fuzzy c-means with sup norm [39].
Mahalanobis distance	$D_{ij} = (\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{S}^{-1} (\mathbf{x}_i - \mathbf{x}_j)$, where S is the within- group covariance matrix.	Invariant to any nonsingular linear transformation. S is calculated based on all objects. Tend to form hyperellipsoidal clusters. When features are not correlated, squared Mahalanobis distance is equivalent to squared Euclidean distance. May cause some computational burden.	Ellipsoidal ART [13] Hyperellipsoidal clustering algorithm [194].
Pearson correlation	$D_{ij} = (1 - r_{ij})/2, \text{ where } r_{ij} = \frac{\sum_{i=1}^{d} (x_{ii} - \overline{x_i})(x_{ji} - \overline{x_j})}{\sqrt{\sum_{i=1}^{d} (x_{ii} - \overline{x_i})^2 \sum_{l=1}^{d} (x_{ji} - \overline{x_j})^2}}$	Not a metric. Derived from correlation coefficient. Unable to detect the magnitude of differences of two variables.	Widely used as th measure fo analyzing gen expression data [80].
Point symmetry distance	$D_{ir} = \min_{\substack{j=1,\dots,N\\ \text{and } j\neq j}} \frac{\left\ (\mathbf{x}_i - \mathbf{x}_r) + (\mathbf{x}_j - \mathbf{x}_r) \right\ }{\left\ (\mathbf{x}_i - \mathbf{x}_r) \right\ + \left\ (\mathbf{x}_j - \mathbf{x}_r) \right\ }$	Not a metric. Compute the distance between an object \mathbf{x}_i and a reference point \mathbf{x}_r . D_{ir} is minimized when a symmetric pattern exists.	SBKM (Symmetry based <i>K</i> -means [264].
Cosine similarity	$S_{ij} = \cos \alpha = \frac{\mathbf{x}_i^T \mathbf{x}_j}{\ \mathbf{x}_i\ \ \mathbf{x}_j\ }$	Independent of vector length. Invariant to rotation, but not to linear transformations.	The most commonly used measure in document clustering [261].

Pearson Correlation

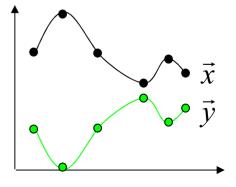
Two profiles (vectors) $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$

$$C_{pearson}(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{N} (x_i - m_x)(y_i - m_y)}{\sqrt{\left[\sum_{i=1}^{N} (x_i - m_x)^2\right]\left[\sum_{i=1}^{N} (y_i - m_y)^2\right]}}$$

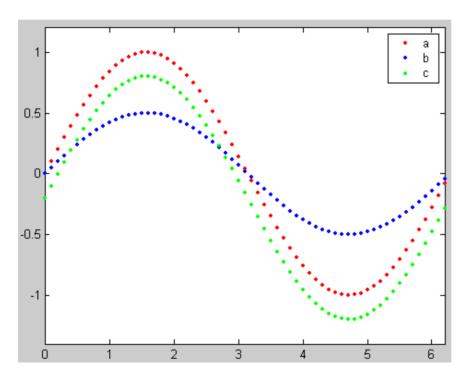
$$m_x = \frac{1}{N} \sum_{n=1}^{N} x_n$$
$$m_y = \frac{1}{N} \sum_{n=1}^{N} y_n$$



+1 \geq Pearson Correlation \geq - 1



 Pearson Correlation: Trend Similarity



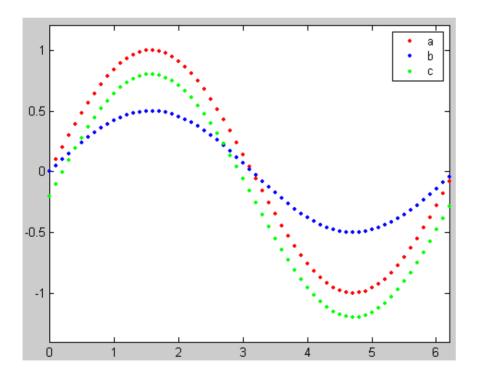
$$\vec{b} = 0.5\vec{a}$$
$$\vec{c} = \vec{a} - 0.2$$
$$C_{pearson}(\vec{a}, \vec{b}) = 1$$
$$C_{pearson}(\vec{a}, \vec{c}) = 1$$
$$C_{pearson}(\vec{b}, \vec{c}) = 1$$

Euclidean Distance

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

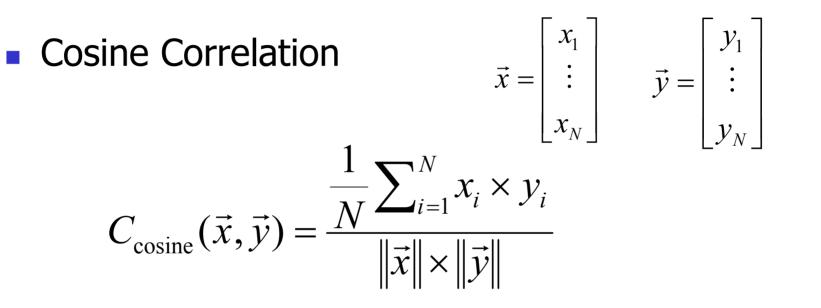
$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2}$$

Euclidean Distance: Absolute difference



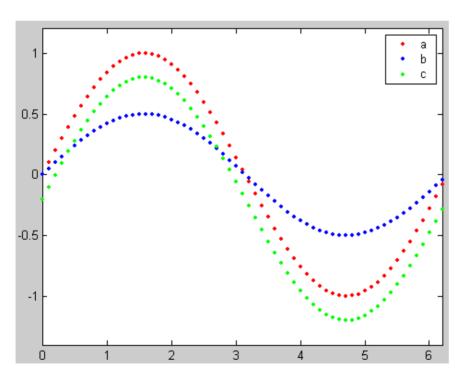
$$\vec{b} = 0.5\vec{a}$$

 $\vec{c} = \vec{a} - 0.2$
 $d(\vec{a}, \vec{b}) = 2.8025$
 $d(\vec{a}, \vec{c}) = 1.5875$
 $d(\vec{b}, \vec{c}) = 3.2211$



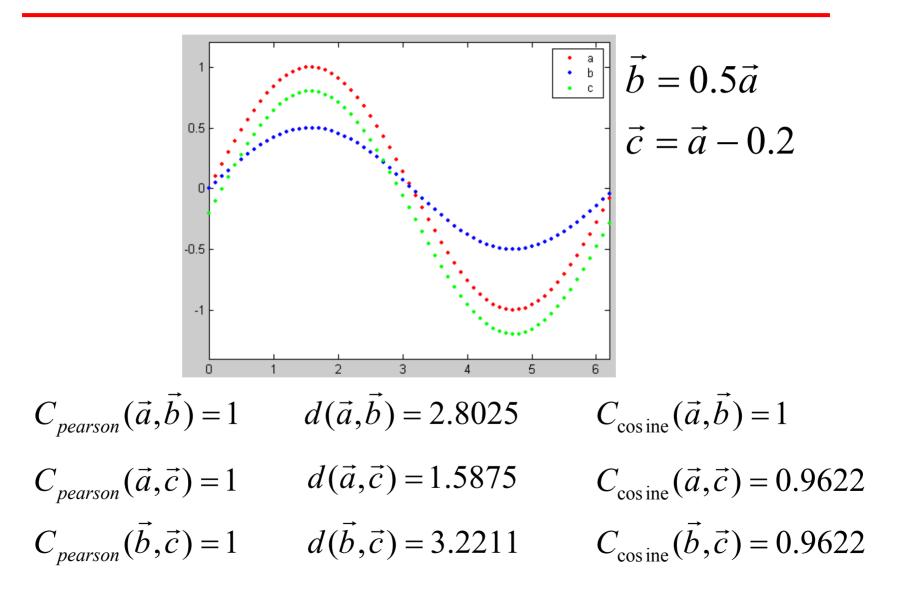
$$\vec{x} = \vec{y}$$
 +1 \geq Cosine Correlation \geq -1 $\vec{x} = -\vec{y}$

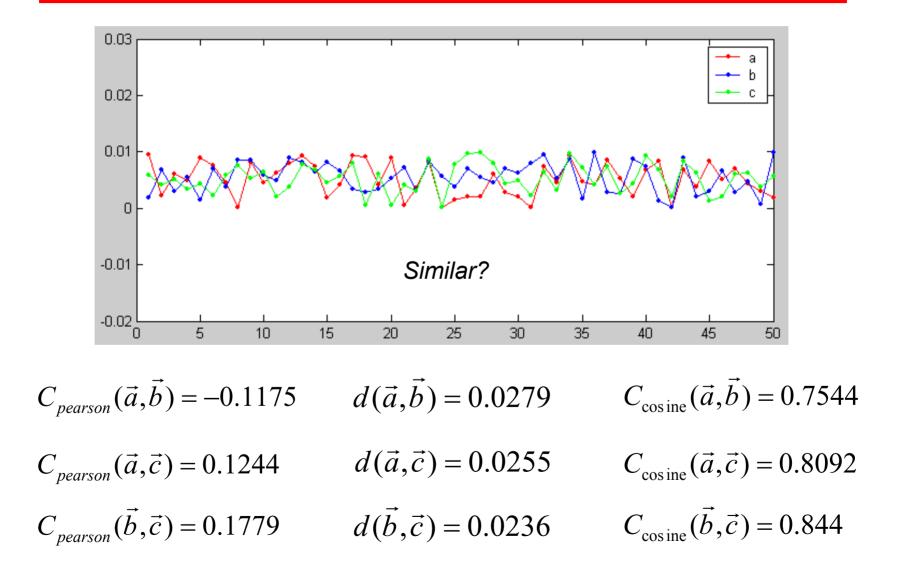
Cosine Correlation: Trend + Mean
 Distance



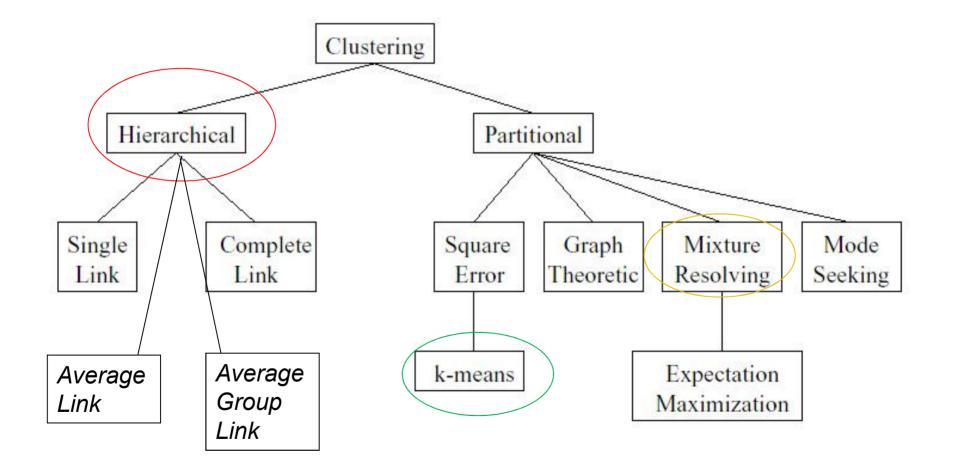
$$\vec{b} = 0.5\vec{a}$$

 $\vec{c} = \vec{a} - 0.2$
 $C_{\text{cos ine}}(\vec{a}, \vec{b}) = 1$
 $C_{\text{cos ine}}(\vec{a}, \vec{c}) = 0.9622$
 $C_{\text{cos ine}}(\vec{b}, \vec{c}) = 0.9622$

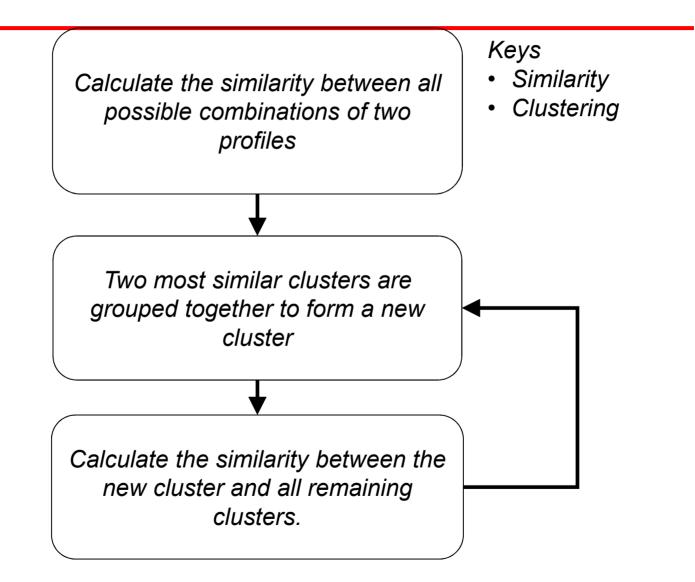




Taxonomy of Clustering Approaches



Hierarchical Clustering



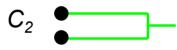
General agglomerative clustering

- 1) Start with N singleton clusters. Calculate the proximity matrix for the N clusters.
- 2) Search the minimal distance

$$D(C_i, C_j) = \min_{\substack{1 \le m, l \le N \\ m \ne l}} D(C_m, C_l)$$

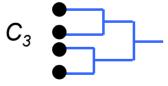
where D(*,*) is the distance function discussed before, in the proximity matrix, and combine cluster C_i and C_j to form a new cluster.

- 3) Update the proximity matrix by computing the distances between the new cluster and the other clusters.
- 4) Repeat steps 2)–3) until all objects are in the same cluster.

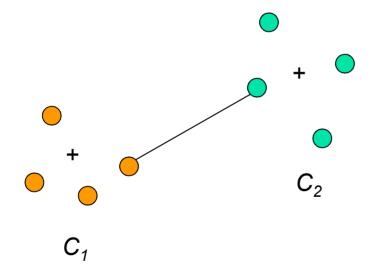


Merge which pair of clusters?

- 4 options or distance functions

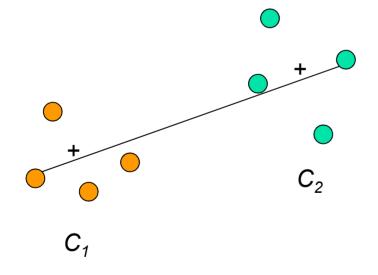


Single Linkage



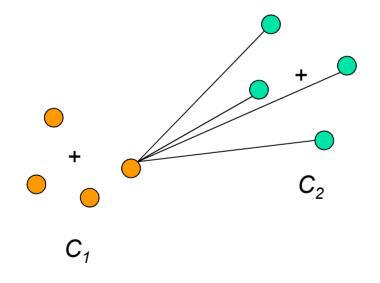
Dissimilarity between two clusters = Minimum dissimilarity between the members of two clusters

Complete Linkage



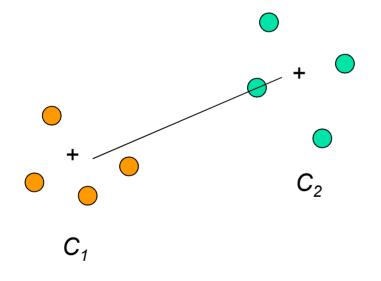
Dissimilarity between two clusters = Maximum dissimilarity between the members of two clusters

Average Linkage



Dissimilarity between two clusters = Averaged distances of all pairs of objects (one from each cluster).

Average Group Linkage



Dissimilarity between two clusters = Distance between two cluster means.