K-Means Clustering

K-Means Clustering

In this section...

“Introduction” on page 11-21
“Creating Clusters and Determining Separation” on page 11-22
“Determining the Correct Number of Clusters” on page 11-23

“Avoiding Local Minima” on page 11-26

Introduction

K-means clustering is a partitioning method. The function kmeans partitions
data into £ mutually exclusive clusters, and returns the index of the cluster
to which it has assigned each observation. Unlike hierarchical clustering,
k-means clustering operates on actual observations (rather than the larger
set of dissimilarity measures), and creates a single level of clusters. The
distinctions mean that k-means clustering is often more suitable than
hierarchical clustering for large amounts of data.

kmeans treats each observation in your data as an object having a location in
space. It finds a partition in which objects within each cluster are as close to
each other as possible, and as far from objects in other clusters as possible.
You can choose from five different distance measures, depending on the kind
of data you are clustering.

Each cluster in the partition is defined by its member objects and by its
centroid, or center. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimized. kmeans computes
cluster centroids differently for each distance measure, to minimize the sum
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from
each object to its cluster centroid, over all clusters. This algorithm moves
objects between clusters until the sum cannot be decreased further. The
result is a set of clusters that are as compact and well-separated as possible.
You can control the details of the minimization using several optional input
parameters to kmeans, including ones for the initial values of the cluster
centroids, and for the maximum number of iterations.

11-21



11 Cluster Analysis

11-22

Creating Clusters and Determining Separation

The following example explores possible clustering in four-dimensional data
by analyzing the results of partitioning the points into three, four, and five
clusters.

Note Because each part of this example generates random numbers
sequentially, i.e., without setting a new state, you must perform all steps
in sequence to duplicate the results shown. If you perform the steps out of
sequence, the answers will be essentially the same, but the intermediate
results, number of iterations, or ordering of the silhouette plots may differ.

First, load some data:

load kmeansdata;
size(X)
ans =

560 4

Even though these data are four-dimensional, and cannot be easily visualized,
kmeans enables you to investigate whether a group structure exists in them.
Call kmeans with k, the desired number of clusters, equal to 3. For this
example, specify the city block distance measure, and use the default starting
method of initializing centroids from randomly selected data points:

idx3 = kmeans(X,3, 'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make
a silhouette plot using the cluster indices output from kmeans. The silhouette
plot displays a measure of how close each point in one cluster is to points in
the neighboring clusters. This measure ranges from +1, indicating points that
are very distant from neighboring clusters, through 0, indicating points that
are not distinctly in one cluster or another, to -1, indicating points that are
probably assigned to the wrong cluster. silhouette returns these values in
its first output:

[silh3,h] = silhouette(X,idx3, 'city');
set(get(gca, 'Children'), 'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')

ylabel('Cluster')



K-Means Clustering

Zluster
]

0 0.2 0.4 06 0.8 1
Silhouette Yalue

From the silhouette plot, you can see that most points in the third cluster
have a large silhouette value, greater than 0.6, indicating that the cluster is
somewhat separated from neighboring clusters. However, the first cluster
contains many points with low silhouette values, and the second contains a
few points with negative values, indicating that those two clusters are not
well separated.

Determining the Correct Number of Clusters

Increase the number of clusters to see if kmeans can find a better grouping
of the data. This time, use the optional 'display' parameter to print
information about each iteration:

idx4 = kmeans(X,4, 'dist','city', ‘'display’', 'iter');

iter phase num sum
1 1 560 2897.56

11-23



11 Cluster Analysis

11-24

2 1 53 2736.67
3 1 50 2476.78
4 1 102 1779.68
5 1 5 1771 .1
6 2 0 1771 .1

6 iterations, total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans
reassigns points between clusters and recomputes cluster centroids. In this
case, the second phase of the algorithm did not make any reassignments,
indicating that the first phase reached a minimum after five iterations. In
some problems, the first phase might not reach a minimum, but the second
phase always will.

A silhouette plot for this solution indicates that these four clusters are better
separated than the three in the previous solution:

[silh4,h] = silhouette(X,idx4,'city');
set(get(gca, 'Children'), 'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')

ylabel('Cluster')



K-Means Clustering

Zluster

0 0.2 0.4 0.6 0.8 1
Silhouette Value

A more quantitative way to compare the two solutions is to look at the average
silhouette values for the two cases:

mean(silh3)
ans =

0.52594
mean(silh4)
ans =

0.63997

Finally, try clustering the data using five clusters:

idx5 = kmeans(X,5,'dist','city', 'replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
set(get(gca, 'Children'), 'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')

11-25



11 Cluster Analysis

11-26

ylabel('Cluster')
mean(silh5)
ans =

0.52657

Zluster

0 0.2 04 06 0.3 1
Silhouette Yalue

This silhouette plot indicates that this is probably not the right number of
clusters, since two of the clusters contain points with mostly low silhouette
values. Without some knowledge of how many clusters are really in the data,
it 1s a good idea to experiment with a range of values for k.

Avoiding Local Minima

Like many other types of numerical minimizations, the solution that kmeans
reaches often depends on the starting points. It is possible for kmeans to
reach a local minimum, where reassigning any one point to a new cluster
would increase the total sum of point-to-centroid distances, but where a



K-Means Clustering

better solution does exist. However, you can use the optional 'replicates’
parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to
print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
‘display', 'final', 'replicates',5);

17 iterations, total sum of distances = 2303.36
5 iterations, total sum of distances = 1771.1
6 iterations, total sum of distances = 1771.1
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, non-global
minima do exist. Each of these five replicates began from a different randomly
selected set of initial centroids, and kmeans found two different local minima.
However, the final solution that kmeans returns is the one with the lowest
total sum of distances, over all replicates.

sum(sumdist)
ans =
1771 .1

11-27



