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Fisher’s Linear Discriminent (DHS 3.8.2)

Reduce feature dimension N to 1 if possible. For a 3D problem, if 2D gives comparable results

then make a 2D problem.

MN cells, N=dimensions

N-dimensions -> 1 dimension

2-D case, 2-class case (See Fig. 4.27)
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

Find 1-D line that will optimally separate prototypes in a 1-D problem. Prototypes are

projections of original N-D prototypes onto the line.

2-class version

J N-D samples
XXy eve 5 Xjy ouen XJ
Ji samples in S;

J> samples in S»

=1+,

Let y=w'x;
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where yi=1-D (projected) prototype
x;=original (N-D) prototype

if ||w||=1, there is no scale change

Objective: Find the direction of the line that gives best separation of prototypes.

Consider the ratio:

[Distance between class means]/[Some measure of standard deviation of each class]

Let m=class mean

mj=1/Ji z xj

x; €S;

Sample mean of projected points:

m; :JL Zyj :JLiZWij :mel-

i yeS;

Distance between projected means:
~ T
|m1 —m2| =‘w (m, —mz)‘

Define scatter measure

SP= Yy, )’

x;€S;

Variance of projected prototypes can be estimated by:

1VI(SE +52)

(S +5%) = within class scatter

Definition

Fisher’s linear discriminant:

The linear function w'x for which the criterian function J(w)=

~ o~ 2
|my —mj |

Si.er

S +8;

1S maximized.

In terms of Sg and Sw J(w) can be rewritten (without derivation)

J(w)= [WTSpw]/[wTSww]
where w=S,,"!(m;-m)

See details in DHS 4.10
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Iterative Optimization (DHS 10.8)

J samples, K clusters ~ K'/J! possible partitions
K=5, J=100 => 10°’ possible partitions!
Given a partitioning, move a sample from one cluster to another. If this improves the value of
Jextremum @ccept it as a new partitioning. Otherwise, keep old partitioning. Iterate.
- Find local extremum of Jexiremum

- Statistical techniques can find a global extremum.

For sum-of-squared errors criterion

K
Jex=)e= Ji

i=1
where Ji=2||xj-mj||*
mi=( 1 /j i)ZXj

want to minimize J.

Suppose sample X, currently in z;, is moved to cluster z.

For an index “1”

New mean m* becomes:

m* =[mji+ X )/[jirt1] = [myjtmt X -my)/ [ji+1]

m* =m + (X -my)/(ji+1) adding one sample to z

New criterion function Ji*
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For an index “i

1734 1)

Similarly, if X is removed from class zi, updating rules are:
mi*=mi — ()NC -mi)/ (ji-l)

I#*=di=[ji/ G-DI | X -mil?

K

Je=

n=1

Jn

Transfer X from z; to zif decrease in J; is larger than increase in J, that is if
Gi/ G=DI 1% -mil> > [/ Gre D] || X -my|?

Then J. decreases (= accept the new partitioning)

AsJi, Ji-> oo, put X in the same class as the closest (old) mean.

The greatest decrease in J. is obtained by putting X in the cluster for which

[i/ Gr+1)] || X -my|* is minimum.

Clustering Procedures — Basic Iterative Min. Squared Error Clustering

A

Choose no. of clusters, K

Select an initial partition of J samples into clusters. Compute J. and means my, ..., m.
Select the next candidate sample X .Move X to zi.

Update J. & m;

Check if J. reduces. Go to Step 3

If J. has not changed in J attempts, stop.

Possible selection of initial conditions (initial clusters):

1.
2.

Use sample mean for K=1
Get K initial points (means) from K-1 points (clusters) by selecting sample farthest
from K-1 points

Use Min. distance classifier to get initial clusters.

Next Topic: K-means clustering



