Fisher's Linear Discriminent (DHS 3.8.2)

Reduce feature dimension N to 1 if possible. For a 3D problem, if 2D gives comparable results then make a 2D problem.

 M^N cells, N=dimensions N-dimensions -> 1 dimension

2-D case, 2-class case (See Fig. 4.27)

Figure 4.27: Projection of samples onto two different lines. The figure on the right shows greater separation between the red and black projected points.

Find 1-D line that will optimally separate prototypes in a 1-D problem. Prototypes are projections of original N-D prototypes onto the line.

2-class version J N-D samples $X: X_1, \ldots, X_j, \ldots, X_J$ J_1 samples in S_1 J_2 samples in S_2

 $J=J_1+J_2$ Let $y_j = w^T x_j$

where $y_i=1-D$ (projected) prototype xj=original (N-D) prototype

if $||w||=1$, there is no scale change

Objective: Find the direction of the line that gives best separation of prototypes.

Consider the ratio:

[Distance between class means]/[Some measure of standard deviation of each class]

Let m_i=class mean

$$
m_j = 1/J_i \sum_{x_j \in S_i} x_j
$$

Sample mean of projected points:

$$
\widetilde{m}_i = \frac{1}{J_i} \sum_{y_j \in S_i} y_j = \frac{1}{J_i} \sum w^T x_j = w^T m_i
$$

Distance between projected means:

$$
\left| \widetilde{m}_1 - \widetilde{m}_2 \right| = \left| w^T \left(m_1 - m_2 \right) \right|
$$

Define scatter measure

$$
\widetilde{S}_i^2 = \sum_{x_j \in S_i} (y_j - \widetilde{m}_i)^2
$$

Variance of projected prototypes can be estimated by:

 $1/J(\tilde{S}_1^2 + \tilde{S}_2^2)$ $\widetilde{S}_1^2 + \widetilde{S}_2^2$) $(\tilde{S}_1^2 + \tilde{S}_2^2)$ $\widetilde{S}_1^2 + \widetilde{S}_2^2$) = within class scatter

Definition

Fisher's linear discriminant:

The linear function w^Tx for which the criterian function $J(w) = \frac{|m_1 - m_2|}{\tilde{S}_1^2 + \tilde{S}_2^2}$

 $\frac{\widetilde{n}_1 - \widetilde{m}_2}{\widetilde{\sigma}^2 + \widetilde{\sigma}^2}$ $|\widetilde{m}_1 - \widetilde{m}_2|$ $S_1^2 + S$ $\widetilde{m}_1 - \widetilde{m}_2$ $^{+}$ $\frac{-\widetilde{m}_2|^2}{\widetilde{}^2}$ is maximized.

In terms of S_B and S_W J(w) can be rewritten (without derivation)

 $J(w)=[w^{T}S_{B}w]/[w^{T}S_{w}w]$

where $w=S_w^{-1}(m_1-m_2)$

See details in DHS 4.10

Iterative Optimization (DHS 10.8)

J samples, K clusters \sim K^J/J! possible partitions

K=5, J=100 \Rightarrow 10⁶⁷ possible partitions!

Given a partitioning, move a sample from one cluster to another. If this improves the value of Jextremum accept it as a new partitioning. Otherwise, keep old partitioning. Iterate.

- Find local extremum of J_{extremum}
- Statistical techniques can find a global extremum.

For sum-of-squared errors criterion

$$
J_{ext} = J_e = \sum_{i=1}^{K} J_i
$$

where $J_i = \sum ||x_j - m_i||^2$
 $m_i = (1/j_i)\sum x_j$
want to minimize J_e
Suppose sample \tilde{x} , currently in z_i , is moved to cluster z_i .

For an index "l" New mean m_l ^{*} becomes:

 $m_1^* = [m_1 j_1 + \tilde{x}]/[j_1+1] = [m_1 j_1 + m_1 + \tilde{x} - m_1]/[j_1+1]$ $m_1^* = m_1 + (\tilde{x} - m_1)/(j_1 + 1)$ adding one sample to z_1

New criterion function J_1^*

$$
J_l^* = J_l + \frac{j_l}{(j_l + 1)} ||\tilde{x} - m_l||^2
$$

For an index "i" Similarly, if \tilde{x} is removed from class z_i , updating rules are: $m_i^* = m_i - (\tilde{x} - m_i) / (j_i - 1)$ $\mathbf{J}_{i}^* = \mathbf{J}_{i} - [j_i / (j_i - 1)] || \widetilde{x} - m_i||^2$ $J_e = \sum_{n=1}^K$ $n = 1$ J_n

Transfer \tilde{x} from z_i to z_i if decrease in J_i is larger than increase in J_i , that is if $[j_i / (j_i-1)] || \tilde{x} - m_i||^2 > [j_i / (j_i+1)] || \tilde{x} - m_i||^2$

Then J_e decreases (\rightarrow accept the new partitioning)

As J_i , $J_i \rightarrow \infty$, put \tilde{x} in the same class as the closest (old) mean.

The greatest decrease in J_e is obtained by putting \tilde{x} in the cluster for which $[j_1 / (j_1+1)] || \tilde{x} - m_1||^2$ is minimum.

Clustering Procedures – Basic Iterative Min. Squared Error Clustering

- 1. Choose no. of clusters, K
- 2. Select an initial partition of J samples into clusters. Compute J_e and means $m_1, ..., m_k$.
- 3. Select the next candidate sample \tilde{x} . Move \tilde{x} to z_i .
- 4. Update $J_e \& m_i$
- 5. Check if J_e reduces. Go to Step 3
- 6. If J_e has not changed in J attempts, stop.

Possible selection of initial conditions (initial clusters):

- 1. Use sample mean for K=1
- 2. Get K initial points (means) from K-1 points (clusters) by selecting sample farthest from K-1 points
- 3. Use Min. distance classifier to get initial clusters.

Next Topic: K-means clustering