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2) Kn Nearest-Neighbor (NN) Density Estimation (DHS 4.4) 

 

Parzen windows – V1, V2, …, Vj  (representing the changing volumes) 

Problem: How to choose Vj’s 

Kn-NN -> Let Vj be a function of the data. 

 

Center each cell (region) at x and let it grow until it captures kj samples. kj is specified as some 

function of j. 

 

 

 

 

If the density of samples is high near x, the cell will be small, and if the density is low, the cell 

will be large. 

 

A common choice is: 

 kj = j  

 pj(x)= (kj/j) / Vj  

 kj = j  => pj(x) =1/ [ j Vj ] => k-NN estimate 
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Example: kj = j  j=1 => kj=1 (DHS 4.4.1) 

 

 

 

 

V1=2|x-x1| 

J=1: p1(x)=1/ [ 1 V1] = 1/ [2|x-x1|] 

 

Figure 4.12 (next page) 

If kj=k1 j  (similar to the Parzen-window approach, hj = h1/sqrt(j)) 

Different choices of k1 give different estimates pj(x); all converge asymptotically to p(x) 
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Estimation of a posteriori probabilities (DHS 4.4.2) 

Use of the Parzen windows and k-nearest neighbor (k-NN) for estimation of posteriori 

probabilities P(Si|x) 

 

Place a cell, volume V around x and capture k samples. 

Assume ki of these samples belong to class Si 

 

Estimate of the joint probabilities density is: 

 

pj(x,Si) = (ki/j) / V = Pj(Si|x)pj(x) 

pj(x) = 


K

i 1

pj(x,Si) 

Pj(Si|x) = pj(x,Si) /


K

i 1

pj(x,Si) =( (ki/j) /V )/
l

( (kl/j) / V) = ki/k 

Pj(Si|x)=ki/k 

 

Percentage of samples (in cell) that belong to Si. 

Cell size can be chosen either for Parzen window estimation (typically Vj=1/ j ) or for NN 

(typically k=kj= j ). 

Generally kikj 

Pj(Si|x)=kij/kj  <- k-NN estimate or Parzen window estimate 

where  

- kij= Number of samples that fall in a cell (centered at x) at the j-th iteration, which 

belong to class Si 

- kj=Total number of samples (over all classes) that fall into a cell (centered at x) at 

the j-th iteration. 

 

That is, the estimate of a posteriori probability that Si is the state of nature is merely the fraction 

of the samples within the cell that are labeled Si. 

 

As j goes to infinity an infinite number of samples will fall within the infinitely small cell. The 

fact that the cell volume could become arbitrarily small and yet contain an arbitrarily large 

number of samples would allow us to learn the unknown probabilities with virtual certainty and 

thus eventually obtain optimum performance. 
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Nearest Neighbor Rule (DHS 4.5) 

 

Obtain comparable performance if we base our decision solely on the label of the single nearest 

neighbor of x. 

 

Sn={x1, x2, …, xn} a set of n labeled prototypes  

x’Sn be the prototype nearest to a test point x. 

 

Nearest neighbor rule for classifying x is to assign it the label associated with x’. 

 

The nearest neighbor rule is suboptimal: lead to an error rate greater than the minimum possible, 

the Bayes rate.  

 

With an unlimited number of proto-types the error rate is never worse than the twice the Bayes 

rate.  

 

Voronoi Tessellation 
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k-Nearest Neighbor Rule (DHS 4.5.4) 

Extension of the nearest neighbor rule is the k-nearest neighbor rule. 

This rule classifies x by assigning it the label most frequently represented among the k nearest 

samples; in other words, a decision is made by examining the labels on the k nearest neighbors 

and taking a vote  

 

 

 

 

 

 

 

 

 

 



KHU-BME 

Pattern Classification 

Lecture 15 

 7

Metrics and Nearest Neighbor Classification (DHS 4.6) 

Properties of Metrics 

* Scaling Problem (DHS Fig. 4.18) 

 

Metrics 

- Minkowski metric (a.k.a. Lk norm)  

 k=2  Euclidean distance (L2 norm) 

- Manhattan distance with k=1 (L1 norm) 

- Tanimoto metric n1 and n2 are the no. of 

elements in each set of S1 and S2. n12 is the number in both sets. 


