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2) K, Nearest-Neighbor (NN) Density Estimation (DHS 4.4)

Parzen windows — Vi, Vo, ..., V; (representing the changing volumes)
Problem: How to choose V;’s
Ka-NN > Let Vj be a function of the data.

Center each cell (region) at x and let it grow until it captures k; samples. k; is specified as some

function of j.

If the density of samples is high near x, the cell will be small, and if the density is low, the cell

will be large.

A common choice is:

ki= j
pi(x)= (ki/j) / V;

k= j =>pix) =1/[/; Vi]=>k-NN estimate
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Figure 4.10: Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for £ = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally occur away fom the positions of the points themselves.
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Figure 4.11: The k-nearest-neighbor estimate of a two-dimensional density for k = 5.
Notice how such a finite n estimate can be quite “jagged,” and that discontinuities in
the slopes generally occur along lines away from the positions of the points themselves.

Example: kj= /j j=1=>k=1 (DHS 4.4.1)

V1=2|X-X1|
=1 pi(x)=1/[1 Vi] = 1/ [2x-x1]]
Figure 4.12 (next page)
If k=k, ﬁ (similar to the Parzen-window approach, h; = hi/sqrt(j))

Different choices of k; give different estimates pj(x); all converge asymptotically to p(x)
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Figure 4.12: Several k-nearest-neighbor estimates of two unidimensional densities: a
Gaussian and a bimodal distribution. Notice how the finite n estimates can be quite
“Spiky-ﬂ



KHU-BME
Pattern Classification
Lecture 15

Estimation of a posteriori probabilities (DHS 4.4.2)

Use of the Parzen windows and k-nearest neighbor (k-NN) for estimation of posteriori
probabilities P(Six)

Place a cell, volume V around x and capture k samples.

Assume k; of these samples belong to class S;

Estimate of the joint probabilities density is:

pi(x.Si) = (kilj) / V = Pi(Six)pi(x)

K
pix) = Y. pix.S)
i1

K
Pi(Six) = pi(x,8) /Y pi(x.8) =((kij) /V)/ Y, ((ki/j)/ V) =kik

i=1 !

Pi(Silx)=ki/k

Percentage of samples (in cell) that belong to S;.

Cell size can be chosen either for Parzen window estimation (typically Vi=1/ ﬁ ) or for NN

(typically k=k=1// ).

Generally kizk;
Pi(Six)=kij/’kj <-k-NN estimate or Parzen window estimate
where
- ki= Number of samples that fall in a cell (centered at x) at the j-th iteration, which
belong to class S;
- k~Total number of samples (over all classes) that fall into a cell (centered at x) at

the j-th iteration.

That is, the estimate of a posteriori probability that S; is the state of nature is merely the fraction

of the samples within the cell that are labeled S;.

As j goes to infinity an infinite number of samples will fall within the infinitely small cell. The
fact that the cell volume could become arbitrarily small and yet contain an arbitrarily large
number of samples would allow us to learn the unknown probabilities with virtual certainty and

thus eventually obtain optimum performance.
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Nearest Neighbor Rule (DHS 4.5)

Obtain comparable performance if we base our decision solely on the label of the single nearest

neighbor of x.

S"={x1, X2, ..., Xa} a set of n labeled prototypes

x’eS" be the prototype nearest to a test point x.

Nearest neighbor rule for classifying x is to assign it the label associated with x’.

The nearest neighbor rule is suboptimal: lead to an error rate greater than the minimum possible,

the Bayes rate.

With an unlimited number of proto-types the error rate is never worse than the twice the Bayes

rate.

Voronoi Tessellation

Figure 4.13: In two dimensions, the nearest-neighbor algorithm leads to a partitioning
of the input space into Voronoi cells, each labelled by the category of the training point
it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal.
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k-Nearest Neighbor Rule (DHS 4.5.4)

Extension of the nearest neighbor rule is the k-nearest neighbor rule.

This rule classifies x by assigning it the label most frequently represented among the k nearest
samples; in other words, a decision is made by examining the labels on the k nearest neighbors

and taking a vote

X

Figure 4.15: The k-nearest-neighbor query starts at the test point and grows a spher-
ical region until it encloses k training samples, and labels the test point by a majority
vote of these samples. In this k = 5 case, the test point x would be labelled the
category of the black points.




KHU-BME
Pattern Classification
Lecture 15

Metrics and Nearest Neighbor Classification (DHS 4.6)

Properties of Metrics

non-negativity: D(a,b) > 0
reflexivity: D(a,b) =0 if and only ifa=">b
symmetry: D(a,b) = D(b,a)

triangle inequality: D(a,b)+ D(b,c) > D(a,c).

* Scaling Problem (DHS Fig. 4.18)

X o,

Figure 4.18: Even if each coordinate is scaled by some constant, the resulting space
still obeys the properties of a metric. However, a nearest-neighbor classifier would
have different results depending upon such rescaling. Consider the test point x and
its nearest neighbor. In the original space (left), the black prototype is closest. In
the figure at the right, the z; axis has been rescaled by a factor 1/3; now the nearest
prototype is the red one. If there is a large disparity in the ranges of the full data in
each dimension, a common procedure is to rescale all the data to equalize such ranges,
and this is equivalent to changing the metric in the original space.

Metrics

d 1/k
Li(a,b) = (Z |a; — bilk) ;
i=1

- Minkowski metric (a.k.a. Lx norm)

B k=2 - Euclidean distance (L, norm)
- Manbhattan distance with k=1 (L; norm)

. ny + 1y — 2140
DTanimoto(Sbb‘Z) == o 3
ny + ng — N2

- Tanimoto metric n; and n, are the no. of

elements in each set of S; and S,. ny2is the number in both sets.



