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Nonparametric Techniques for Density Estimation (DHS Ch. 4) 

 Introduction 

 Density Estimation Procedure 

 Concept of General Techniques  

 Parzen Window Estimation & Example 

 Kn-Nearest Neighbor Estimation & Example 

 

Introduction 

Suppose you don’t know the form of the densities 

Try to estimate p(x|Sk) (=likelihood) or P(Sk|x) (= a posteriori) 

 Estimation of probability density functions. 

 

Consider sample vector x1, x2, …, xJ, drawn from a class independently with probability density 

p(x). 

 

The probability that a vector x lies in a region R is  

 P = R p(x’)dx’ 

P is a smoothed or averaged version of the density function p(x’) 

 

[Consider Binomial Case] 

Probability that k of the vectors lie in R is binomial (if samples drawn i.i.d.) 

 Pk = kJk PP
k

J 







)1(  probability of k samples out of J fall in R.  

 P = probability that it lies in R 

 1-P = probability that it doesn’t lie in R 

 Mean E{k} = JP 

 k/J = reasonable estimate for P. P=k/J 

Assume region R is small and has a volume V (if we can find). 

 P = R p(x’)dx’  p(x)V 

 p(x)  P/V  

Then, leads to an estimate 

 p(x)  (k/J) / V = k/(JV) 

Would like to take a limit to V-> to reduce smoothing of p(x’) but number of samples is finite. 
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Some Problems 

If we fix the volume and take more training samples => the ratio k/J will converge to P, but p(x) 

will be space-averaged value of p(x). (check out Fig. 4.1 above) 

If V is getting big, p(x) gets smaller.  

 

If we shrink V to zero and fix the number of n samples, R becomes too small to enclose any 

samples in V, making p(x) close to zero. 

 

Estimation Procedure to Estimate the Density of x 

1. Form a sequence of regions R1, R2, … 

2. Region Rj is employed for j samples 

3. Let Vj be the volume of Rj 

4. Let kj be the number of samples falling in Rj 

5. The j-th estimate of p(x) is pj(x)=[kj/j]/ Vj. 

pj(x) will converge to p(x) if: 

 (1) 0lim 


j
j

V  

(2) 
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j
j
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
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Many ways of satisfying these conditions: 

1. Shrink the regions, say Vj = 1/ j  (Parzen window) 

2. Let kj = j , and let the volume grow to enclose kj neighbors of x. (nearest neighbor) 
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Concepts of General Techniques 

 

Estimate p(x) from samples xj 

 

Technique (1): Histogram, fixed bin size and location 

 

 

 

 

 

 

 

 

 

 

 

Count number samples that fall into each bin. (crude estimate)  

 

 

 

Technique (2): Fixed bin size, variable bin location (i.e., sliding bins) 

 

 

 

 

 

 

 

 

 

 

 

 

Count number samples that fall into region centered at x, for each x. 
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Technique (3): Bin locations set by samples, bin shape is a parameter. 

 

 

 

 

 

 

 

 

 

 

 

Each sample xi gives rise to a window function centered about xi. Estimate p(x) by summing 

over window functions. 

 

 

 

 

Window function (x-xi) 

 

 

 

 

 

 

 

 

 

 pj(x) = 1/j 



j

i
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)(   

(2) and (3) are equivalent for certain choices of window functions . 
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Two Popular Techniques in Nonparametric Techniques 

1) Parzen Window Estimation 

2) Nearest Neighbor Estimation 

-------------------------------------------------------------------------- 

1) Parzen Window Estimation (DHS 4.3) 

Define a window function (u)=(x-xi) 

Estimate p(x). Given a sample x=xi, p(xi) is nonzero, and if p(x) is continuous, p(x) is nonzero 

for x close to xi 

 

Use window function (x-xi) centered at xi.  should be non-increasing. 

 

Estimate of p(x) is  

pj(x) = (1/j) 


j

i 1

(x-xi)             (Parzen window estimate) 
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To ensure that pj(x) represents a density, require: 

 (*) (u)0 

  (u)du = 1 

 

Let j(x) = (1/Vj) (x) 

If Vj=hj
d (d is dimension) 

Choice of scale or width of j(x) is important. hj affects both the amplitude and the width. 

 

 

Small width => high resolution in pj(x), but noisy 

 

 

 

 

 

 

 

 

 

 

 

Large width => pj(x) will be over-smoothed. 
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Choice of hj or Vj affects on pj(x). If Vj is too large, the estimate will suffer from too little 

resolution. If Vj is too small, the estimate will suffer from too much statistical variability.   

 

With a limited number of samples, the best is to accept compromise.  

 

With an unlimited number of samples, let Vj slowly approach zero as j increases and have pj(x) 

converges to the unknown density p(x). 

 

 

 

 



KHU-BME 

Pattern Classification 

Lecture 14 

 10

Parzen Window Example (DHS 4.3.3) 

Unknown density p(x) is normal. 

p(x) = N(N, m, 2) 

 

zero-mean, unit-variance, univariate normal density 

 

Choose a window function: 

 

(u) = 1/(sqrt(2)) exp { (-1/2)u2 } 

j(x-xi)=(1/hj)  [(x-xj)/hj ] 

  = 1/(sqrt(2)hj) exp { (-1/2)
2



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 
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 } 

 Window width = hj = h1/sqrt(j) 

 h1 is a parameter at our disposal. 

 

pj(x) = (1/j)


j

i 1

j(x-xi) 
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 (xi is an observed sample) 
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Classification Example 

Classifier based on Parzen-window estimation. 

 

Estimate the densities for each category and classify a test point by the label corresponding to 

the maximum posterior. 

 

Figure 4.8 Decision regions for a Parzen-window classifier depend upon the choices of window 

function. 

 

In general, the training error can be made arbitrarily low by making the window width 

sufficiently small. But a low training error does not guarantee a small test error. 

 

Curse of dimensionality: demand for a larger number of samples grows exponentially with the 

dimensionality of the feature space.  
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Parzen window techniques: advantages and disadvantages 

Advantage 

- Generality: No a prior assumptions (except continuity of p(x)). Given enough 

samples, it is guaranteed to converge to correct density p(x). 

Disadvantages 

- Number of samples required is generally quite large 

- Number of samples required grows exponentially with the number of dimensions 

in feature space.  

- Choice of sizes of regions Vj is important. 

 

 

Choosing the window function (DHS 4.3.6) 

 

One of problems in Parzen-window approach is the choice of the sequence of cell-volume sizes 

V1, V2, … or overall window size.  

 

If Vj = V1/sqrt(j), the results of any finite j will be sensitive to the choice of the initial volume V1 

If V1 is too small, most of the volume will be empty 

If V1 is too large, important spatial variations in p(x) could be lost due to averaging. 


