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Bayesian Estimation (DHS 3.3) 

 

Bayesian Classifier (DHS 3.3.1) 

P(Sk|x)  P(Sj|x) for all j=1 to k => x  Sk 

                            P(𝑆௞|𝑥) ∝ P(x|𝑆௞)𝑃(𝑆௞) 

What do we do if P(Sj) and P(x|Sj) are unknown? Compute them using all information 

we have. 

 

 

Given z, the set of samples, compute the posterior probabilities P(Sk|x,z)     Final Goal 

(i.e., use the training samples to compute the class-conditional density and prior density) 

From Bayes theorm, P(Sk|x,z)= p(x|Sk,z)P(Sk|z) / 


K

j 1

p(x|Sj,z) P(Sj|z) 

Assume P(Sj|z) = P(Sj) and P(Sj) are known 

Subdivide z: z1, z2, …, zk 

where zi contains all prototypes in class Si  

 

Assume p(x|Si,z) = p(x|Si,zi) 

P(Sk|x,z) = p(x|Sk, zk) P(Sk) / 


K

j 1

p(x|Sj,zj) P(Sj) 

That is treat each class separately, 

 

P(x|Sk) has known parametric form => p(x|Sk, ) is known. 

 

The goal is to determine the likelihood, p(x|Sk, zk) using the prototypes zk.  Goal 
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Parameter Distribution (DHS 3.3.2) 

 

Now, our goal is to compute p(x| zk), which can be computed from 

p(x| zk)= p(x, | zk)d  

since the selection of x and the selection of the training samples in zk is done independently, 

rewrite this 

p(x| zk)= p(x| )p( | zk)d       (*) 

This equation links the class-conditional density p(x| zk) to the posterior density p( | zk) for the 

unknown parameter vector.  

If p( | zk) peaks very sharply about the some value ̂ , we obtain p(x| zk)  p(x|̂ ). 

This means the result is obtained by substituting ̂  (the estimate) for the true parameter. 

 

Bayesian Parameter Estimation: Gaussian Case (DHS 3.4) 

Goal: compute (Goal 1) p( |z) and then (Goal 2) p(x | z) in (*).  Two Goals 

 

(Goal 1) Learning the mean of a normal density: get p(|zk) (DHS 3.4.1): Univariate Case 

Assumption: p(x|) = N(x,,2) 

=unknown 

2=known 

= 

 

Objective: determine p(|zk) 

Assume: p()=N(,o, o
2) known 

o=known 

   = a priori guess of parameter  

o
2=known 

   = variance or uncertainty of the guess o 

 

Bayes theorem  p(|z)= [ p(z|)p() ] / [ p(z|) p() d ] 

 

Denominator = p(z) = 1/ 

 

{zk} = { x1, x2, …, xJ} 

 = set of prototypes from same class k, independently drawn from the population 
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Drop k -> z & Drop Sk 

xi’s independently drawn => p(z|) = 


J

j 1

p(xj|) 

p(|z) =  


J

j 1

p(xj|)p() 

=   p()


J

j 1

p(xj|) 

p()=N(,o, o
2) (known) 

p(xj|)=N(xj,,2) ( unknown and 2 known) 
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Since p(|z)=normal 

Now set, p(|z) = 
J2
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Therefore p(|z)=N(,J,J
2) 
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These equations show how prior is combined with empirical information in samples to obtain a 

posteriori density p( | z) 

 

J is best estimate of  after J observations. 

J is the uncertainty in the estimate J. 

This behavior is called Bayesian Learning (note DHS Fig. 3.2) 
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(Goal 2) Now get p(x|z): again univariate case (Read DHS 3.4.2) 

 

Now we know p(|z). 

Need to obtain the class-conditional density, p(x|z)=p(x|Sk,zk) 

Recall (*)   =>  p(x|z)= p(x|)p(|z)d 
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This makes p(x|z) as a function of x is proportional to 
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Therefore p(x|z) is normally distributed with mean J and 2+J
2 : 

∴ p(x|z)=N(x,J,2+J
2) 

 

 

 

 

 

 

[Summary] Bayesian Estimation Procedure  

1. Estimate J and J by the boxed formulas and substitute into the equation for p(|z). 

2. Find p(x|z) from above. 

3. Use the following to find, P(Sk|x,z), given p(x|z)=p(x|S,z) and p(S) 

p(Sk|x,z) = p(x|Sk, zk) p(Sk) / 


K

j 1

p(x|Sj,zj) p(Sj) 

(for class Sk, p(x|z)=p(x|Sk,zk)) 
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Multivariate Extension 

 

p(x|)=N(x,,) 

p()=N(,0, 0) 

p(x|z)=N(x,J, +J) 

0, 0,  are known.  is unknown 

 

where  

J = 0[0+/J]-1mJ + (1/J) [0 + (1/J) ]-1 0 

J=0[0+1/J) ]-1 (/J) 

 





J

j
jJ x

J
m

1

1
 

0=initial guess of  

0=initial uncertainty. 

 

 

Generalize the above technique => General Bayesian Learning 

(Again, do for each class Sk separately) 

1. General form of p(x|) is known, but  is not known exactly. 

2. Initial knowledge about  is available as p(). Rest of our knowledge is a set of samples 

{x1, x2, …, xJ} = z of known classification drawn from a population of unknown density 

p(x). (xj is independent of xk) 

Objective: Compute p(x|z) to obtain P(Sk|x,z) 

Procedure 

1. p(x|z)= p(x|)p(|z)d     (*) 

where 

2. p(|z) = p(z|)p() /   p(z|)p()d 

where 

3. p(z|) = 


J

j 1

p(xj|) 

Note: If p(z|) peaks at =̂ , then p(|z) will peak at =̂  

ML:  that maximizes p(z|). 
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Recursive Bayesian Learning 

From 3,  p(z(J)|) = p(xJ|)
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p(|z(o)) = p() 

Sequence:  p() (initial guess with no data) 

        p(|z(1)) = p(|x1) 

  p(|z(2)) = p(|x1,x2) 

  …                          Usually converges to a delta function. 

 

 

Which Method is Better? Maximum-Likelihood or Bayes Methods (DHS 3.5.1) 

- Computational Complexity: ML is preferred since it requires merely differential 

calculus techniques or gradient search w.r.t. parameters. Bayes methods require 

complex multidimensional integration. 

- ML will be easier to interpret and understand, but Bayesian gives a weighted average of 

models or parameters, leading to solutions more complicated and harder to understand. 

- Bayesian uses more information brought into the problem than ML. 

- If more reliable information available, Bayes gives better results. 

- Bayesian with a flat prior gives same results as ML. 

- Bayesian balances between the accuracy of the estimation and its variance. 

- Three Error Sources 

 Bayes error: due to overlapping densities. Cannot be eliminated.  

 Model error: due to an incorrect model. With better models, can be reduced. 

 Estimation error: due to a finite sample. Reduced with more training data. 
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Problems of Dimensionality (DHS 3.7) 

- How classification accuracy depends upon the dimensionality and the amount of 

training data 

- The computational complexity of designing the classifier. 

- For Bayes classifier, the most useful features are the ones that offer bigger differences 

between the means than the standard deviations, thus reducing the probability of error. 

- An obvious way is to introduce new independent features. 

- If performance of a classifier is poor, it is natural to utilize new features, particularly 

ones that will help separate the class pairs most frequently confused.  

- But increasing the number of features increases the cost and complexity of both the 

feature extractor and the classifier.  

- In general, the performance should improve  

- See DHS Fig. 3.3 
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Overfitting (DHS 3.7.3) 

- See DHS Fig. 3.4 

 

 
 

 

 

 

 

 

 

* Principle Component Analysis (DHS 3.8.1) and Fisher Linear Discriminant (DHS 3.8.2) will 

be covered later in Unsupervised Classification. 


