Bayesian Estimation (DHS 3.3)

Bayesian Classifier (DHS 3.3.1)

 $P(S_k|\underline{x}) \geq P(S_j|\underline{x}) \text{ for all } j{=}1 \text{ to } k \Longrightarrow \underline{x} \in S_k$

$$P(S_k|\underline{x}) \propto P(\underline{x}|S_k)P(S_k)$$

What do we do if $P(S_j)$ and $P(\underline{x}|S_j)$ are unknown? Compute them using all information we have.

Given \underline{z} , the set of samples, compute the posterior probabilities $P(S_k | \underline{x}, \underline{z})$ \leftarrow Final Goal

(i.e., use the training samples to compute the class-conditional density and prior density)

From Bayes theorm, $P(S_k|\underline{x},\underline{z}) = p(\underline{x}|S_k,\underline{z})P(S_k|\underline{z}) / \sum_{j=1}^{K} p(x|S_j,\underline{z}) P(S_j|\underline{z})$

Assume $P(S_j|\underline{z}) = P(S_j)$ and $P(S_j)$ are known

Subdivide \underline{z} : \underline{z}_1 , \underline{z}_2 , ..., \underline{z}_k

where \underline{z}_i contains all prototypes in class S_i

Assume $p(\underline{x}|S_{i},\underline{z}) = p(\underline{x}|S_{i},\underline{z}_{i})$ $P(S_{k}|\underline{x},\underline{z}) = p(\underline{x}|S_{k}, \underline{z}_{k}) P(S_{k}) / \sum_{j=1}^{K} p(\underline{x}|S_{j},\underline{z}_{j}) P(S_{j})$

That is treat each class separately,

 $P(\underline{x}|S_k)$ has known parametric form => $p(\underline{x}|S_k, \underline{\theta})$ is known.

The goal is to determine the likelihood, $p(x|S_k, \underline{z}_k)$ using the prototypes \underline{z}_k . \leftarrow Goal

Parameter Distribution (DHS 3.3.2)

Now, our goal is to compute $p(x | \underline{z}_k)$, which can be computed from $p(x | \underline{z}_k) = \int p(x, \underline{\theta} | \underline{z}_k) d\underline{\theta}$ since the selection of x and the selection of the training samples in \underline{z}_k is done independently, rewrite this $p(x | \underline{z}_k) = \int p(x | \underline{\theta}) p(\underline{\theta} | \underline{z}_k) d\underline{\theta}$ (*) This equation links the class-conditional density $p(x | \underline{z}_k)$ to the posterior density $p(\underline{\theta} | \underline{z}_k)$ for the unknown parameter vector.

If $p(\underline{\theta} | \underline{z}_k)$ peaks very sharply about the some value $\hat{\underline{\theta}}$, we obtain $p(x | \underline{z}_k) \approx p(x | \hat{\underline{\theta}})$.

This means the result is obtained by substituting $\hat{\theta}$ (the estimate) for the true parameter.

Bayesian Parameter Estimation: Gaussian Case (DHS 3.4) Goal: compute (Goal 1) $p(\underline{\theta} | \underline{z})$ and then (Goal 2) $p(\underline{x} | \underline{z})$ in (*). \leftarrow Two Goals

(Goal 1) Learning the mean of a normal density: get $p(\mu|z_k)$ (DHS 3.4.1): Univariate Case Assumption: $p(x|\mu) = N(x,\mu,\sigma^2)$

 $\mu = \text{unknown}$ $\sigma^2 = \text{known}$ $\theta = \mu$

Objective: determine $p(\mu|z_k)$

Assume: $p(\mu)=N(\mu,\mu_o,\sigma_o^2)$ known

 μ_{o} =known

= a priori guess of parameter μ

 $\sigma_o^2 = known$

= variance or uncertainty of the guess μ_o

Bayes theorem $p(\mu|\underline{z}) = [p(z|\mu)p(\mu)] / [\int p(z|\mu) p(\mu) d\mu]$

Denominator = $p(z) = 1/\alpha$

 $\{z_k\} = \{ x_1, x_2, ..., x_J \}$

= set of prototypes from same class k, independently drawn from the population

Drop k -> z & Drop S_k

x_i's independently drawn => $p(z|\mu) = \prod_{j=1}^{J} p(x_j|\mu)$

$$p(\mu|z) = \alpha \prod_{j=1}^{J} p(x_j|\mu)p(\mu)$$

$$= \alpha p(\mu) \prod_{j=l}^{J} p(x_j|\mu)$$

$$\begin{split} p(\mu) &= N(\mu, \mu_o, \, \sigma_o{}^2) \; (known) \\ p(x_j | \mu) &= N(x_j, \mu, \sigma^2) \; (\mu \; unknown \; and \; \sigma^2 \; known) \end{split}$$

$$p(\mu|\underline{z}) = \alpha \frac{1}{\sqrt{2\pi\sigma_0}} \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_0}{\sigma_0}\right)^2\right\} \prod_{j=1}^J \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x_j-\mu}{\sigma}\right)^2\right\}$$

$$= \alpha' \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_0}{\sigma_0}\right)^2\right\} \exp\left\{-\frac{1}{2}\sum_{j=1}^J \left(\frac{x_j-\mu}{\sigma}\right)^2\right\}$$

$$= \alpha' \exp\left\{-\frac{1}{2\sigma_0^2}\mu^2 + \frac{\mu_0}{\sigma_0^2}\mu - \frac{1}{2}\frac{\mu_0}{\sigma_0^2}\right\} \exp\left\{-\frac{1}{2\sigma^2}\sum_{j=1}^J x_j^2 + \frac{\mu}{\sigma^2}\sum_{j=1}^J x_j - \frac{1}{2\sigma^2}J\mu^2\right\}$$

$$= \alpha'' \exp\left\{-\frac{1}{2}\left[(\frac{1}{\sigma_0^2} + \frac{J}{\sigma^2})\mu^2 - 2(\frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2})\mu\right]\right\} \quad (**)$$
where $m_J = \frac{1}{J}\sum_{j=1}^J x_j$

Since $p(\mu|z)$ =normal

Now set,
$$p(\mu|z) = \frac{1}{\sqrt{2\pi\sigma_J}} \exp\left\{-\frac{1}{2}\left(\frac{\mu - \mu_J}{\sigma_J}\right)^2\right\} = N(\mu,\mu_J,\sigma_J^2)$$

$$=\beta \exp\left\{-\frac{1}{2}\left[\frac{1}{\sigma_J^2}\mu^2 - \frac{2\mu_J}{\sigma_J^2}\mu + \frac{\mu_J^2}{\sigma_J^2}\right]\right\} \text{ and compare to (**)}$$

$$=> \frac{1}{\sigma_J^2} = \frac{1}{\sigma_0^2} + \frac{J}{\sigma^2}$$

$$\frac{\mu_J}{\sigma_J^2} = \frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2}$$
So $\sigma_J^2 = \frac{\sigma^2\sigma_0^2}{\sigma^2 + J\sigma_0^2}$

$$\mu_J = \sigma_J^2\left[\frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2}\right]$$

Therefore $p(\mu|z)=N(\mu,\mu_J,\sigma_J^2)$

$$\mu_{J} = \frac{\sigma^{2}}{\sigma^{2} + J\sigma_{0}^{2}} \mu_{0} + \frac{J\sigma_{0}^{2}}{\sigma^{2} + J\sigma_{0}^{2}} m_{J}$$
$$\sigma_{J}^{2} = \frac{\sigma^{2}\sigma_{0}^{2}}{\sigma^{2} + J\sigma_{0}^{2}}, \quad m_{J} = \frac{1}{J} \sum_{j=1}^{J} x_{j}$$

These equations show how prior is combined with empirical information in samples to obtain a posteriori density $p(\underline{\theta} \mid \underline{z})$

 μ_J is best estimate of μ after J observations.

 σ_J is the uncertainty in the estimate $\mu_J.$

This behavior is called Bayesian Learning (note DHS Fig. 3.2)

(Goal 2) Now get p(x|z): again univariate case (Read DHS 3.4.2)

Now we know $p(\mu|z)$.

Need to obtain the class-conditional density, $p(x|z)=p(x|S_k,z_k)$

Recall (*) => $p(x|z)=\int p(x|\mu)p(\mu|z)d\mu$

$$\mathbf{p}(\mathbf{x}|\mathbf{z}) = \int \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \frac{1}{\sqrt{2\pi\sigma_J}} \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_J}{\sigma_J}\right)^2\right\} d\mu$$

$$p(\mathbf{x}|\mathbf{z}) = \frac{1}{2\pi\sigma\sigma_J} \exp\left\{-\frac{1}{2}\left(\frac{(\mathbf{x}-\mu_J)^2}{\sigma^2+\sigma_J^2}\right)\right\} f(\sigma,\sigma_J)$$

where
$$f(\sigma, \sigma_J) = \int \exp\left\{-\frac{1}{2}\frac{\sigma^2 + \sigma_J^2}{\sigma^2 \sigma_J^2} \left(\mu - \frac{\sigma_J^2 \mu + \sigma^2 \mu_J}{\sigma^2 + \sigma_J^2}\right)^2\right\} d\mu$$

This makes p(x|z) as a function of x is proportional to $exp\left\{-\frac{1}{2}\left(\frac{(x-\mu_J)^2}{\sigma^2+\sigma_J^2}\right)\right\}$

Therefore p(x|z) is normally distributed with mean μ_J and $\sigma^2 + \sigma_J^2$: $\therefore p(x|z)=N(x,\mu_J,\sigma^2 + \sigma_J^2)$

[Summary] Bayesian Estimation Procedure

- 1. Estimate μ_J and σ_J by the boxed formulas and substitute into the equation for $p(\mu|z)$.
- 2. Find p(x|z) from above.
- 3. Use the following to find, $P(S_k|\underline{x},\underline{z})$, given p(x|z)=p(x|S,z) and p(S)

$$p(S_k|\underline{x},\underline{z}) = p(\underline{x}|S_k, \underline{z}_k) p(S_k) / \sum_{j=1}^{\kappa} p(\underline{x}|S_j,\underline{z}_j) p(S_j)$$

(for class S_k , $p(x|z)=p(x|S_k,z_k)$)

Multivariate Extension

$$\begin{split} p(\mathbf{x} \mid \boldsymbol{\mu}) = & \mathrm{N}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\ p(\boldsymbol{\mu}) = & \mathrm{N}(\boldsymbol{\mu}, \boldsymbol{\mu}_0, \ \boldsymbol{\Sigma}_0) \\ p(\mathbf{x} \mid z) = & \mathrm{N}(\mathbf{x}, \boldsymbol{\mu}_J, \ \boldsymbol{\Sigma} + \ \boldsymbol{\Sigma}_J) \\ \boldsymbol{\mu}_0, \ \boldsymbol{\Sigma}_0, \ \boldsymbol{\Sigma} \text{ are known. } \boldsymbol{\mu} \text{ is unknown} \end{split}$$

where
$$\begin{split} \mu_{J} &= \sum_{0} [\sum_{0} + \sum/J]^{-1} m_{J} + (1/J) \sum [\sum_{0} + (1/J) \sum]^{-1} \mu_{0} \\ \sum_{J} &= \sum_{0} [\sum_{0} + 1/J) \sum]^{-1} (\sum/J) \end{split}$$

$$m_J = \frac{1}{J} \sum_{j=1}^J x_j$$

 μ_0 =initial guess of μ \sum_0 =initial uncertainty.

Generalize the above technique => General Bayesian Learning

(Again, do for each class Sk separately)

- 1. General form of $p(\underline{x}|\underline{\theta})$ is known, but θ is not known exactly.
- Initial knowledge about <u>θ</u> is available as p(<u>θ</u>). Rest of our knowledge is a set of samples {<u>x</u>₁, <u>x</u>₂,..., <u>x</u>_J} = <u>z</u> of known classification drawn from a population of unknown density p(<u>x</u>). (<u>x</u>_j is independent of <u>x</u>_k)

Objective: Compute $p(\underline{x}|\underline{z})$ to obtain $P(S_k|\underline{x},\underline{z})$

Procedure

```
1. p(\underline{x}|\underline{z}) = \int p(\underline{x}|\underline{\theta}) p(\underline{\theta}|\underline{z}) d\underline{\theta} (*)

where

2. p(\underline{\theta}|\underline{z}) = p(\underline{z}|\underline{\theta}) p(\underline{\theta}) / \int p(\underline{z}|\underline{\theta}) p(\underline{\theta}) d\underline{\theta}

where

3. p(\underline{z}|\underline{\theta}) = \prod_{j=1}^{J} p(\underline{x}_j|\underline{\theta})
```

Note: If $p(z|\theta)$ peaks at $\underline{\theta} = \underline{\hat{\theta}}$, then $p(\underline{\theta}|\underline{z})$ will peak at $\underline{\theta} = \underline{\hat{\theta}}$

ML: θ that maximizes $p(\underline{z}|\underline{\theta})$.

Recursive Bayesian Learning

From 3, $p(z^{(J)}|\theta) = p(x_J|\theta) \prod_{j=1}^{J-1} p(x_j|\theta)$ or $p(z^{(J)}|\theta) = p(x_J|\theta) p(z^{(J-1)}|\theta)$

From 2,
$$p(\theta|z^{(J)}) = \frac{[p(x_J \mid \theta)p(z^{(J-1)} \mid \theta)]p(\theta)}{\int [p(x_J \mid \theta)p(z^{(J-1)} \mid \theta)]p(\theta)d\theta}$$

Use Bayes rule

$$p(z^{(J-1)} | \theta)p(\theta) = p(\theta | z^{(J-1)})p(z^{(J-1)})$$

$$p(\theta \mid z^{(J)}) = \frac{p(x_J \mid \theta) p(\theta \mid z^{(J-1)}) p(z^{(J-1)})}{\int p(x_J \mid \theta) p(\theta \mid z^{(J-1)}) p(z^{(J-1)}) d\theta}$$

 $p(\theta|z^{(o)}) = p(\theta)$

Sequence:

ce:
$$p(\theta)$$
 (initial guess with no data)
 $p(\theta|z^{(1)}) = p(\theta|x_1)$
 $p(\theta|z^{(2)}) = p(\theta|x_1,x_2)$
...

Usually converges to a delta function.

Which Method is Better? Maximum-Likelihood or Bayes Methods (DHS 3.5.1)

- Computational Complexity: ML is preferred since it requires merely differential calculus techniques or gradient search w.r.t. parameters. Bayes methods require complex multidimensional integration.
- ML will be easier to interpret and understand, but Bayesian gives a weighted average of models or parameters, leading to solutions more complicated and harder to understand.
- Bayesian uses more information brought into the problem than ML.
- If more reliable information available, Bayes gives better results.
- Bayesian with a flat prior gives same results as ML.
- Bayesian balances between the accuracy of the estimation and its variance.
- Three Error Sources
 - Bayes error: due to overlapping densities. Cannot be eliminated.
 - Model error: due to an incorrect model. With better models, can be reduced.
 - Estimation error: due to a finite sample. Reduced with more training data.

Problems of Dimensionality (DHS 3.7)

- How classification accuracy depends upon the dimensionality and the amount of training data
- The computational complexity of designing the classifier.
- For Bayes classifier, the most useful features are the ones that offer bigger differences between the means than the standard deviations, thus reducing the probability of error.
- An obvious way is to introduce new independent features.
- If performance of a classifier is poor, it is natural to utilize new features, particularly ones that will help separate the class pairs most frequently confused.
- But increasing the number of features increases the cost and complexity of both the feature extractor and the classifier.
- In general, the performance should improve
- See DHS Fig. 3.3

Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and thus in three dimensions the Bayes error vanishes. When projected to a subspace — here, the two-dimensional $x_1 - x_2$ subspace or a one-dimensional x_1 subspace — there can be greater overlap of the projected distributions, and hence greater Bayes errors.

Overfitting (DHS 3.7.3)

- See DHS Fig. 3.4

Figure 3.4: The "training data" (black dots) were selected from a quadradic function plus Gaussian noise, i.e., $f(x) = ax^2 + bx + c + \epsilon$ where $p(\epsilon) \sim N(0, \sigma^2)$. The 10th degree polynomial shown fits the data perfectly, but we desire instead the second-order function f(x), since it would lead to better predictions for new samples.

* Principle Component Analysis (DHS 3.8.1) and Fisher Linear Discriminant (DHS 3.8.2) will be covered later in Unsupervised Classification.