Bayesian Estimation (DHS 3.3)

Bayesian Classifier (DHS 3.3.1)

 $P(S_k|\underline{x}) \ge P(S_j|\underline{x})$ for all j=1 to $k \Rightarrow \underline{x} \in S_k$

$$
P(S_k | \underline{x}) \propto P(\underline{x} | S_k) P(S_k)
$$

What do we do if $P(S_i)$ and $P(x|S_i)$ are unknown? Compute them using all information we have.

Given \underline{z} , the set of samples, compute the posterior probabilities $P(S_k|\underline{x},\underline{z}) \leftarrow F$ Final Goal

(i.e., use the training samples to compute the class-conditional density and prior density)

From Bayes theorm, $P(S_k|\underline{x},\underline{z})=p(\underline{x}|S_k,\underline{z})P(S_k|\underline{z})/\sum_{j=1}^K$ $j = 1$ $p(x|S_j, z) P(S_j|z)$

Assume $P(S_j|Z) = P(S_j)$ and $P(S_j)$ are known

Subdivide \underline{z} : \underline{z}_1 , \underline{z}_2 , ..., \underline{z}_k

where z_i contains all prototypes in class S_i

Assume $p(x|S_i, z) = p(x|S_i, z_i)$ $P(S_k|\underline{x},\underline{z}) = p(\underline{x}|S_k, \underline{z}_k) P(S_k) / \sum_{j=1}$ K $j=1$ $p(\underline{x}|S_j, \underline{z}_j) P(S_j)$

That is treat each class separately,

 $P(\underline{x}|S_k)$ has known parametric form => $p(\underline{x}|S_k, \theta)$ is known.

The goal is to determine the likelihood, $p(x|S_k, z_k)$ using the prototypes z_k . \leftarrow Goal

Parameter Distribution (DHS 3.3.2)

Now, our goal is to compute $p(x|z_k)$, which can be computed from $p(x|Z_k) = \int p(x, \theta | Z_k) d\theta$ since the selection of x and the selection of the training samples in z_k is done independently, rewrite this $p(x|z_k) = \int p(x|\theta) p(\theta | z_k) d\theta$ (*) This equation links the class-conditional density $p(x | z_k)$ to the posterior density $p(\theta | z_k)$ for the

unknown parameter vector.

If $p(\theta | z_k)$ peaks very sharply about the some value $\hat{\theta}$, we obtain $p(x | z_k) \approx p(x | \hat{\theta})$.

This means the result is obtained by substituting $\hat{\theta}$ (the estimate) for the true parameter.

Bayesian Parameter Estimation: Gaussian Case (DHS 3.4)

Goal: compute (Goal 1) $p(\theta | z)$ and then (Goal 2) $p(x | z)$ in (*). \leftarrow Two Goals

(Goal 1) Learning the mean of a normal density: get $p(\mu|z_k)$ (DHS 3.4.1): Univariate Case Assumption: $p(x|\mu) = N(x,\mu,\sigma^2)$

=unknown σ^2 =known

 $\theta = \mu$

Objective: determine $p(\mu|z_k)$

Assume: $p(\mu)=N(\mu,\mu_0,\sigma_0^2)$ known

 μ_0 =known

 $=$ a priori guess of parameter μ

 σ ²=known

= variance or uncertainty of the guess μ_0

Bayes theorem $p(\mu|z) = [p(z|\mu)p(\mu)] / [\int p(z|\mu) p(\mu) d\mu]$

Denominator = $p(z) = 1/\alpha$

 ${z_k} = { x_1, x_2, ..., x_J}$

 $=$ set of prototypes from same class k, independently drawn from the population

Drop $k \geq z \&$ Drop S_k

 x_i 's independently drawn \Rightarrow $p(z|\mu) = \prod_{j=1}^{J}$ $j=1$ $p(x_j|\mu)$

$$
p(\mu|z) = \alpha \prod_{j=1}^{J} p(x_j|\mu)p(\mu)
$$

$$
= \alpha p(\mu) \prod_{j=1}^{J} p(x_j|\mu)
$$

 $p(\mu) = N(\mu, \mu_0, \sigma_0^2)$ (known) $p(x_j|\mu) = N(x_j, \mu, \sigma^2)$ (μ unknown and σ^2 known)

$$
p(\mu|Z) = \alpha \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_0}{\sigma_0}\right)^2\right\} \prod_{j=1}^J \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x_j-\mu}{\sigma}\right)^2\right\}
$$

\n
$$
= \alpha' \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_0}{\sigma_0}\right)^2\right\} \exp\left\{-\frac{1}{2}\sum_{j=1}^J \left(\frac{x_j-\mu}{\sigma}\right)^2\right\}
$$

\n
$$
= \alpha' \exp\left\{-\frac{1}{2\sigma_0^2}\mu^2 + \frac{\mu_0}{\sigma_0^2}\mu - \frac{1}{2}\frac{\mu_0}{\sigma_0^2}\right\} \exp\left\{-\frac{1}{2\sigma^2}\sum_{j=1}^J x_j^2 + \frac{\mu}{\sigma^2}\sum_{j=1}^J x_j - \frac{1}{2\sigma^2}J\mu^2\right\}
$$

\n
$$
= \alpha'' \exp\left\{-\frac{1}{2}\left[(\frac{1}{\sigma_0^2} + \frac{J}{\sigma^2})\mu^2 - 2(\frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2})\mu\right]\right\} \quad (*)
$$

\nwhere $m_J = \frac{1}{J}\sum_{j=1}^J x_j$

Since $p(\mu|z)$ =normal

Now set,
$$
p(\mu|z) = \frac{1}{\sqrt{2\pi}\sigma_J} \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_J}{\sigma_J}\right)^2\right\} = N(\mu, \mu_J, \sigma_J^2)
$$

\n
$$
= \beta \exp\left\{-\frac{1}{2}\left[\frac{1}{\sigma_J^2}\mu^2 - \frac{2\mu_J}{\sigma_J^2}\mu + \frac{\mu_J^2}{\sigma_J^2}\right]\right\} \text{ and compare to (**)}
$$
\n
$$
\Rightarrow \frac{1}{\sigma_J^2} = \frac{1}{\sigma_0^2} + \frac{J}{\sigma^2}
$$
\n
$$
\frac{\mu_J}{\sigma_J^2} = \frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2}
$$
\nSo $\sigma_J^2 = \frac{\sigma^2 \sigma_0^2}{\sigma^2 + J\sigma_0^2}$
$$
\mu_J = \sigma_J^2 \left[\frac{\mu_0}{\sigma_0^2} + \frac{Jm_J}{\sigma^2}\right]
$$

Therefore $p(\mu|z) = N(\mu, \mu_J, \sigma_J^2)$

$$
\mu_J = \frac{\sigma^2}{\sigma^2 + J\sigma_0^2} \mu_0 + \frac{J\sigma_0^2}{\sigma^2 + J\sigma_0^2} m_J
$$

$$
\sigma_J^2 = \frac{\sigma^2 \sigma_0^2}{\sigma^2 + J\sigma_0^2}, \quad m_J = \frac{1}{J} \sum_{j=1}^J x_j
$$

These equations show how prior is combined with empirical information in samples to obtain a posteriori density p(θ | z)

 μ is best estimate of μ after J observations.

 σ_J is the uncertainty in the estimate μ_J .

This behavior is called Bayesian Learning (note DHS Fig. 3.2)

(Goal 2) Now get $p(x|z)$: again univariate case (Read DHS 3.4.2)

Now we know $p(\mu|z)$.

Need to obtain the class-conditional density, $p(x|z)=p(x|S_k,z_k)$ Recall (*) \implies $p(x|z) = \int p(x|\mu)p(\mu|z) d\mu$

$$
p(x|z) = \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \frac{1}{\sqrt{2\pi}\sigma_J} \exp\left\{-\frac{1}{2}\left(\frac{\mu-\mu_J}{\sigma_J}\right)^2\right\} d\mu
$$

$$
p(x|z) = \frac{1}{2\pi\sigma\sigma_J} \exp\left\{-\frac{1}{2}\left(\frac{(x-\mu_J)^2}{\sigma^2 + \sigma_J^2}\right)\right\} f(\sigma, \sigma_J)
$$

where
$$
f(\sigma, \sigma_J) = \int \exp\left\{-\frac{1}{2} \frac{\sigma^2 + \sigma_J^2}{\sigma^2 \sigma_J^2} \left(\mu - \frac{\sigma_J^2 \mu + \sigma^2 \mu_J}{\sigma^2 + \sigma_J^2}\right)^2\right\} d\mu
$$

This makes p(x|z) as a function of x is proportional to $\exp\left\{-\frac{1}{2}\left(\frac{(x-\mu_J)^2}{\sigma^2+\sigma_J^2}\right)\right\}$ $\left\{ \right.$ \mathbf{r} $\overline{\mathcal{L}}$ \vert { $\left($ $\overline{}$ Л \setminus $\overline{}$ \setminus ſ $\ddot{}$ $-\frac{1}{2} \left(\frac{(x-\mu_{J})^2}{\pi^2 + \pi^2} \right)$ $(x - \mu_{I})^{2}$ 2 $\exp\left\{-\frac{1}{2}\right\}$ J $x - \mu_J$ σ + σ μ

Therefore $p(x|z)$ is normally distributed with mean μ_J and $\sigma^2 + \sigma_J^2$: \therefore p(x|z)=N(x, μ _J, σ ²+ σ _J²)

[Summary] Bayesian Estimation Procedure

- 1. Estimate μ_J and σ_J by the boxed formulas and substitute into the equation for $p(\mu|z)$.
- 2. Find $p(x|z)$ from above.

f

3. Use the following to find, $P(S_k|X,\underline{z})$, given $p(x|z)=p(x|S,\underline{z})$ and $p(S)$

$$
p(S_k|\underline{x},\underline{z}) = p(\underline{x}|S_k,\,\underline{z}_k)\;p(S_k)\ /\ \sum_{j=1}^K\ p(\underline{x}|S_j,\underline{z}_j)\;p(S_j)
$$

(for class S_k , $p(x|z)=p(x|S_k,z_k)$)

Multivariate Extension

 $p(x|\mu)=N(x,\mu,\Sigma)$ $p(\mu)=N(\mu,\mu_0, \Sigma_0)$ $p(x|z)=N(x,\mu J, \Sigma + \Sigma J)$ μ_0 , Σ_0 , Σ are known. μ is unknown

where $\mu_J = \sum_0 [\sum_0 + \sum /J]^{-1} m_J + (1/J) \sum [\sum_0 + (1/J) \sum]^{-1} \mu_0$ $\Sigma_{J}=\Sigma_{0}[\Sigma_{0}+1/J)\Sigma]^{-1}(\Sigma/J)$

$$
m_J = \frac{1}{J} \sum_{j=1}^J x_j
$$

 μ_0 =initial guess of μ Σ_0 =initial uncertainty.

Generalize the above technique => General Bayesian Learning

(Again, do for each class S_k separately)

- 1. General form of $p(\underline{x}|\theta)$ is known, but θ is not known exactly.
- 2. Initial knowledge about θ is available as $p(\theta)$. Rest of our knowledge is a set of samples ${x_1, x_2, ..., x_J}$ = z of known classification drawn from a population of unknown density $p(\underline{x})$. (\underline{x}_i is independent of \underline{x}_k)

Objective: Compute $p(x|z)$ to obtain $P(S_k|x,z)$

 $j = 1$

Procedure

```
1. p(\underline{x}|\underline{z}) = \int p(\underline{x}|\underline{\theta})p(\underline{\theta}|\underline{z})d\underline{\theta} (*)
where 
2. p(\underline{\theta}|\underline{z}) = p(\underline{z}|\underline{\theta})p(\underline{\theta}) / \int p(\underline{z}|\underline{\theta})p(\underline{\theta})d\underline{\theta}where 
 3. p(\underline{z}|\underline{\theta}) = \prod_{j=1}^{J}p(\underline{x}_j|\underline{\theta})
```
Note: If p(z| θ) peaks at $\underline{\theta} = \hat{\theta}$, then p($\underline{\theta}$ |z) will peak at $\underline{\theta} = \hat{\theta}$

ML: θ that maximizes p($\underline{z}|\theta$).

Recursive Bayesian Learning

From 3, $p(z^{(J)}|\theta) = p(x_J|\theta) \prod^{J-1}$ $=$ 1 1 J j $p(x_j|\theta)$ or $p(z^{(J)}|\theta) = p(x_{J}|\theta) p(z^{(J-1)}|\theta)$

From 2,
$$
p(\theta|z^{(J)}) = \frac{[p(x_J | \theta)p(z^{(J-1)} | \theta)]p(\theta)}{\int [p(x_J | \theta)p(z^{(J-1)} | \theta)]p(\theta)d\theta}
$$

Use Bayes rule

$$
p(z^{(J-1)} | \theta) p(\theta) = p(\theta | z^{(J-1)}) p(z^{(J-1)})
$$

$$
p(\theta | z^{(J)}) = \frac{p(x_J | \theta) p(\theta | z^{(J-1)}) p(z^{(J-1)})}{\int p(x_J | \theta) p(\theta | z^{(J-1)}) p(z^{(J-1)}) d\theta}
$$

 $p(\theta|z^{(0)}) = p(\theta)$

Sequence: $p(\theta)$ (initial guess with no data)

$$
p(\theta|z^{(1)}) = p(\theta|x_1)
$$

$$
p(\theta|z^{(2)}) = p(\theta|x_1,x_2)
$$

… Usually converges to a delta function.

Which Method is Better? Maximum-Likelihood or Bayes Methods (DHS 3.5.1)

- Computational Complexity: ML is preferred since it requires merely differential calculus techniques or gradient search w.r.t. parameters. Bayes methods require complex multidimensional integration.
- ML will be easier to interpret and understand, but Bayesian gives a weighted average of models or parameters, leading to solutions more complicated and harder to understand.
- Bayesian uses more information brought into the problem than ML.
- If more reliable information available, Bayes gives better results.
- Bayesian with a flat prior gives same results as ML.
- Bayesian balances between the accuracy of the estimation and its variance.
- Three Error Sources
	- Bayes error: due to overlapping densities. Cannot be eliminated.
	- Model error: due to an incorrect model. With better models, can be reduced.
	- Estimation error: due to a finite sample. Reduced with more training data.

Problems of Dimensionality (DHS 3.7)

- How classification accuracy depends upon the dimensionality and the amount of training data
- The computational complexity of designing the classifier.
- For Bayes classifier, the most useful features are the ones that offer bigger differences between the means than the standard deviations, thus reducing the probability of error.
- An obvious way is to introduce new independent features.
- If performance of a classifier is poor, it is natural to utilize new features, particularly ones that will help separate the class pairs most frequently confused.
- But increasing the number of features increases the cost and complexity of both the feature extractor and the classifier.
- In general, the performance should improve
- See DHS Fig. 3.3

Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and thus in three dimensions the Bayes error vanishes. When projected to a subspace here, the two-dimensional $x_1 - x_2$ subspace or a one-dimensional x_1 subspace — there can be greater overlap of the projected distributions, and hence greater Bayes errors.

Overfitting (DHS 3.7.3)

- See DHS Fig. 3.4

Figure 3.4: The "training data" (black dots) were selected from a quadradic function plus Gaussian noise, i.e., $f(x) = ax^2 + bx + c + \epsilon$ where $p(\epsilon) \sim N(0, \sigma^2)$. The 10th degree polynomial shown fits the data perfectly, but we desire instead the second-order function $f(x)$, since it would lead to better predictions for new samples.

* Principle Component Analysis (DHS 3.8.1) and Fisher Linear Discriminant (DHS 3.8.2) will be covered later in Unsupervised Classification.