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Bayesian Estimation (DHS 3.3)

Bayesian Classifier (DHS 3.3.1)

P(Syx) = P(Sj|x) for all j=1 to k =>x € Sk
P(Sklx) o P(x|Sk)P(Sk)

What do we do if P(Sj) and P(x|S;) are unknown? Compute them using all information

we have.

Given z, the set of samples, compute the posterior probabilities P(Sk/x,z) < Final Goal

(i.e., use the training samples to compute the class-conditional density and prior density)

K
From Bayes theorm, P(Silx,2)= p(x/Sw2)P(Silz) / Y, p(x[Si.2) P(Silz)

J=1
Assume P(Sj|z) = P(S;) and P(S;) are known
Subdivide z: zi, 2>, ..., z«
where z contains all prototypes in class S;

Assume p(x[Si,z) = p(x[Si,zi)

P(Skx,2) = p(x[Sk, zx) P(S1) / i p(x[Si.z) P(Sy)

J=1

That is treat each class separately,

P(x|Sk) has known parametric form => p(x|Sk, 8) is known.

The goal is to determine the likelihood, p(x|Sk, z«) using the prototypes z.. € Goal
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Parameter Distribution (DHS 3.3.2)

Now, our goal is to compute p(x| zx), which can be computed from
p(x| )= Ip(x, 0| )d &
since the selection of x and the selection of the training samples in zxis done independently,

rewrite this

p(x| )= Ip(x|)p(8| z)d & @)
This equation links the class-conditional density p(x| z) to the posterior density p( 8| z) for the

unknown parameter vector.

If p( 8] z«) peaks very sharply about the some value é, we obtain p(x| zv) = p(X| é).

This means the result is obtained by substituting é (the estimate) for the true parameter.

Bayesian Parameter Estimation: Gaussian Case (DHS 3.4)
Goal: compute (Goal 1) p( € |z) and then (Goal 2) p(x | z) in (*). € Two Goals

(Goal 1) Learning the mean of a normal density: get p(u|zx) (DHS 3.4.1): Univariate Case
Assumption: p(x|n) = N(x,u,6%)

p=unknown

o’=known

B=n

Objective: determine p(LL|zk)
Assume: p()=N(u, Lo, Go>) known
Ho=known

= a priori guess of parameter [t
Go’=known

= variance or uncertainty of the guess L,
Bayes theorem  p(ujz)= [ p(z|wp(w) 1/ [ p(zlw) p(w) dut ]
Denominator = p(z) = 1/a

{zc} = { x1, X2, ..., X1}

= set of prototypes from same class k, independently drawn from the population
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Drop k -> z & Drop Sk

J
xi’s independently drawn => p(z|p) = H p(xil)

J=1

J
puz) =a [ p&iwpw

Jj=1
J

= apm ][] pxiw
Jj=1

P(W=N(i, o, 6,7 (known)
P(xi[)=N(xj,11,6°) (1 unknown and 6* known)

O-O j:l /*1
Ji
=a” exp _l[(LJri)ﬂz_z(ﬂJrﬂ)’u] (%)
2 002 o2 002 o2

1 J
where m, =—» x,
J J ; J
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Since p(p|z)=normal

2
Now set, p(ujz) = £ X ’] = N(u,p1,01%)

1 1 [
N2ro;, 2\ o,

) 2
=Bexp{—%[ 12 ut 2R B ]} and compare to (**)

2 2
gy Gy oy
1 1 J
= STt
c; o0y O©
Hy Mo JImy
o; o o’
2_2
oo J
2 0 M m
So o) =—F—— R
o” +Jog o, ©O

Therefore p(u|z)=N(u,u;,6>)

2
o’ Jo,
Hy=— Ho +— m;
o’ +Jo, o’ +Jog
2
0_2 o O'g 1 J
J T 20 My __ij
o +Jog J 3

These equations show how prior is combined with empirical information in samples to obtain a

posteriori density p( € | z)

L is best estimate of p after J observations.
oy is the uncertainty in the estimate p.

This behavior is called Bayesian Learning (note DHS Fig. 3.2)
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(Goal 2) Now get p(x|z): again univariate case (Read DHS 3.4.2)

Now we know p(p|z).

Need to obtain the class-conditional density, p(x|z)=p(x|Sk,zk)

Recall ()  => p(x[2)=/ p(x|)p(plz)dp
p(X|Z):.|. ﬁ exp{—%(x;'u) } \/%O_ exp{_%(ﬂ;;uj] }dl»l
1 U (i )
Pl exp{-—(%]}ﬂo, o))
27TO-O-J 2\ o +0;

2
1o2+0,” Uz,u+0'2,u
where f(O',O'J)ZIEXp{—E - ; [,u— J / L Ydu

oo, o’ + oy
_ . . . L (x—p,)’
This makes p(x|z) as a function of x is proportional to expy—— 2—12
o +o0,

Therefore p(x|z) is normally distributed with mean py and 6*+c,” :

" p(x|z)=N(x,u1,07+0r%)

[Summary] Bayesian Estimation Procedure
1. Estimate py and oy by the boxed formulas and substitute into the equation for p(p|z).
2. Find p(x|z) from above.
3. Use the following to find, P(Sk|x,z), given p(x|z)=p(x|S,z) and p(S)
K
p(Sklx,2) = p(x[Sk, ) P(SK) / D_ p(x[S;z) p(Si)
j=1

(for class Sk, p(x|z)=p(x|Sk,z«))
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Multivariate Extension

p(x| W=N(x,pm,)
p(W=N(u,uo, >0)
p(x|2)=N(x,uy, X+ )

Uo, 2.0, 2. are known. p is unknown

where

w = YolSo+ A1 my + (/D) 2o+ (/D) 217! o
Y=ol Xo+ 1/D) T17H (/D)

Ly
My ==2.%j
=

Mo=initial guess of p

2o=initial uncertainty.

Generalize the above technique => General Bayesian Learning
(Again, do for each class Sk separately)
1. General form of p(x|0) is known, but 0 is not known exactly.
2. Initial knowledge about O is available as p(8). Rest of our knowledge is a set of samples
{x1, X2, ... X5} = z of known classification drawn from a population of unknown density
p(X). (xj is independent of x)

Objective: Compute p(x|z) to obtain P(Sk|x,z)

Procedure
1. p(xl2=/ pxI0)p(Olz)d0  (¥)
where
2.p(0lz) = p(z0)p(©) / | p(z|0)p(0)dd
where

3. p(2l0) = H p(xi0)

Jj=1
Note: If p(z|6) peaks at 6= é, then p(8|z) will peak at 8= é

ML.: 6 that maximizes p(z|0).
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Recursive Bayesian Learning

J-1
From3, p(z"[0)=pxi(6)[] p(xi0)

j=1

or p(z”]0) = p(x:[0) p(z""|6)

From2, p(0z")= [p(x, 10)p(z""" |0)]p(9)
’ [TpCrs 10)pY ™ [0)1p(O)d0

Use Bayes rule
p(zY ™V 10)p0) = p@] 2 )pzV ™)

p(x, 10)p0] Y )pzY™)

01z =
PerE [ PGy 10)p©@12Y ) p(z)d0

p(0z*) = p(0)

Sequence: p(0) (initial guess with no data)
p(0z™") = p(6Jx1)
p(01z?) = p(Blx1,x2)

Usually converges to a delta function.

Which Method is Better? Maximum-Likelihood or Bayes Methods (DHS 3.5.1)

- Computational Complexity: ML is preferred since it requires merely differential

calculus techniques or gradient search w.r.t. parameters. Bayes methods require
complex multidimensional integration.
- ML will be easier to interpret and understand, but Bayesian gives a weighted average of
models or parameters, leading to solutions more complicated and harder to understand.
- Bayesian uses more information brought into the problem than ML.
- If more reliable information available, Bayes gives better results.
- Bayesian with a flat prior gives same results as ML.
- Bayesian balances between the accuracy of the estimation and its variance.
- Three Error Sources
B Bayes error: due to overlapping densities. Cannot be eliminated.
B Model error: due to an incorrect model. With better models, can be reduced.

B Estimation error: due to a finite sample. Reduced with more training data.
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Problems of Dimensionality (DHS 3.7)

How classification accuracy depends upon the dimensionality and the amount of
training data

The computational complexity of designing the classifier.

For Bayes classifier, the most useful features are the ones that offer bigger differences
between the means than the standard deviations, thus reducing the probability of error.
An obvious way is to introduce new independent features.

If performance of a classifier is poor, it is natural to utilize new features, particularly
ones that will help separate the class pairs most frequently confused.

But increasing the number of features increases the cost and complexity of both the
feature extractor and the classifier.

In general, the performance should improve

See DHS Fig. 3.3

Xy

Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace

here, the two-dimensional x1 — x2 subspace or a one-dimensional x1 subspace — there
can be greater overlap of the projected distributions, and hence greater Bayes errors.
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Overfitting (DHS 3.7.3)
- See DHS Fig. 3.4
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Figure 3.4: The “training data” (black dots) were selected from a quadradic function
plus Gaussian noise, i.e., f(z) = az? + bx 4+ ¢ + € where p(e) ~ N(0,02). The 10th
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), since it would lead to better predictions for new samples.

* Principle Component Analysis (DHS 3.8.1) and Fisher Linear Discriminant (DHS 3.8.2) will

be covered later in Unsupervised Classification.



