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Estimation of Random Parameters (General Methods) 

Parameters θ are random variables, Choose ̂  by minimizaing the expected value of an error 

function or cost function between θ and ̂  

z = observed samples 

Let )ˆ,( C  be a cost function between θ and ̂  

The expected cost or risk of the estimate is  

R=E{ )ˆ,( C }=  dzdzpzC )|())(ˆ,(         Note C(.) is not specified yet 

The estimate ̂  that minimizes R is called the Bayes estimate 

   dzdzpCzpdzdzpzCR ))|()ˆ,()[()|())(ˆ,(   by the Bayes Rule 

Bayes estimate is  

- very general 

- difficult to calculate for general cost functions 

 

Now look at some a specific choice 

 

R= p(z) [  C( , ̂ (z)) p( | z) d ] dz 

 

             dzp )|(1  

Minimize R =>  minimize [  ] for each z => maximize p (̂ | z) 
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MAP:  

=>  

 

 

Use Bayes theroem 

ln p( | z) = ln p(z |) + ln p() – ln p(z) 

 

MAP estimate:  

=> 

 

Note If p() is much more flatly distributed (vs. ) than p(z |), second term can be neglected 

=> MAP = ML. 

 

Estimation Summary 

 

r = s + n 

Measurement r  z 

Now estimate s   , parameter or signal 

where n is noise 

 

1. ML: ŝ  = a value that maximizes p{r|s}  ̂  = a value of   that maximizes p{z| } 

 

2. MAP: ŝ  = a value that maximizes p{s|r}  ̂  = a value of   that maximizes  

p{ |z}, a posteriori density. 
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The same concept can be applied to  

y = x + n  r = s + n 

where y is measurement (of signal or image), x is true value (of signal or image), and n is noise. 

 

 

Bayesian Image Estimation (Restoration) Example 

 

            Before                      After 

- G. K. Chantas, Bayesian Restoration Using a New Nonstaionary Edge-Preserving 

Image Prior, IEEE Trans. Image Processing, 15, 10, 2006 


