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Parameter Estimation (DHS Ch. 3) 

Not all statistics known (remember Case 2 & 3) 

 

Two techniques for estimating p(x|Si), assumed not known a priori 

1. Parametric – Functional form of p(x|Si) is known or assumed. Estimate parameters. 

(DHS Ch. 3 & Review Table 3.1 on the next page) 

Example: p(x|Si)=N(x,mi,i) 

Estimate mi and i from training samples 

Two approaches: maximum likelihood – (1) ML estimation and (2) Maximum a 

Posterior (MAP) estimation (i.e., Bayesian estimation) 

2. Nonparametric: estimate the density functions themselves. (DHS Ch. 4) 

 

Outline 

- Introduction 

- Properties of an estimate 

- Ad Hoc estimates 

- Maximum Likehihood (ML) Estimate 

- ML examples 

- Estimation of random parameters 

- Minimum mean square error (MMSE) estimate 

- Maximum a Posteriori (MAP) estimate 

- Estimation summary 

- Bayes classifier 

- Learning the mean of a normal density 

 Multivariate Extension 

- General Bayesian learning 

 Recursive Bayesian learning 

- Practical problems – Dimensionality 

- Component Analysis and Fisher Linear Discriminant (Later) 

- Markov Models (?) 

- Hidden Markov Models (?) 
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Preliminaries (DHS 3.1) 

 

- Previously, we designed an optimal classifier if the prior probabilities and the class-

conditional densities are known. 

- However, we rarely have this kind of complete knowledge about the probabilistic 

structure of the problems 

- Now, use the samples to estimate the unknown probabilities and probability densities 

- Estimation of the prior probabilities in supervised classification is not a serious 

problems, but not the class-conditional densities 

- At least, assume probability density functions with unknown parameters 

- Two common and reasonable procedures: maximum-likelihood (ML) estimation and 

Bayes estimation 

- ML views the parameters as quantities as fixed values, but unknown (Fig. 3.1) 

- Bayesian views the parameters as random variables (Fig. 3.2) 

- Bayesian learning: observing additional samples sharpens the posteriori densities, 

causing it to peak near the true values of the parameters (Fig. 3.2) 

 

 

Maximum-Likelihood vs. Bayesian Maximum A Posteriori (DHS 3.2.1) 

 

Key concepts 

- IID = independent and identically distributed random variables 

- Likelihood = p(D|θ)    (See Fig. 3.1) 

- Log-Likelihood l(θ)= ln{p(D|θ)}   (See Fig. 3.1) 

- Maximum A Posterior and Mode (See right below & Fig. 3.2)) 

- Fig. 3.1 vs. Fig. 3.2 

MAP estimation 
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Introduction 

Let  be a vector of fixed but unknown parameters. 

Let ̂  be an estimate of . 

  is deterministic. ̂  is random 

Let x1, x2, … be random sample vectors drawn from the density to be estimated. 

The xi’s are assumed independent and (usually) identically distributed. 

 

Let z=[ x1, x2, … , xJ] 

The estimate ̂ : ̂ =G(x1, x2, … , xJ)=G(z)= ̂ (z) => ̂ =random. 

 

Properties of an estimate ̂  

 

Unbiased estimate (most important) 

If E{ ̂ }=G(z)p(z)dz= then ̂  is an unbiased estimate of . Otherwise ̂  is biased. 

 

Consistent estimate 

*lim  


P  Probability limit of 


 => 0}{lim * 





P
k

 




 is a consistent estimate of   if  


limP  

 

Efficient estimate 

Unbiased and have the smallest possible error variance. 

Var( ̂ )≤ Var(ˆ̂ ), then ̂  is more efficient than ˆ̂   

 

Sufficient estimate 

An estimate is called sufficient for  if it contains all information about  which is contained in 

z. 

̂ 1(z) is a sufficient estimate iff for any other estimates ̂ 2(z), … , ̂ N(z), 

the conditional density function of ̂ 2(z), …, ̂ N(z) given ̂ 1(z) does not depend on . 
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p( ̂ 2, ̂ 3, …, ̂ N| ̂ 1,)=f( ̂ 1, ̂ 2,…, ̂ N) 

 

∴The best estimate would be: unbiased, consistent, efficient, and sufficient. 

 

Ad Hoc estimates 

 

Moment estimates: 

 

Sample mean vector 

m̂=1/J 


J

j
jx

1

 

E{ m̂}=m => unbiased. 

Sample is unbiased.  

 

Sample correlation estimate (no mean removed) 

 

Ŝ =1/J 


J

j 1

xjxj
T

 

This is unbiased, consistent. 

 

Sample covariance estimate (mean removed) 

̂=1/J 


J

j 1

(xj- m̂ ) (xj- m̂ )T 

Is ̂  unbiased? It is a biased estimate. 

 

 

 

An unbiased estimate can be obtained: 

̂=1/(J-1)


J

j 1

(xj- m̂ ) (xj- m̂ )T 

If xj are normal, m̂  is normal. 

If xj are arbitrary, m̂  tends to normal by the central limit theorem. 
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Maximum Likelihood Estimate (DHS 3.2.1) 

 

Estimate ̂  ( = fixed but unknown) 

The maximum likelihood (ML) estimate  ̂  of  is that value ̂  which maximizes p(z|). 

Can find this by maximizing ln(p(z|)) w.r.t. . 

 

The ML estimate is the est. that maximizes the probability of obtaining the samples actually 

observed. 
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How to Maximize Likelihood 

Maximize p(z|) w.r.t . 

Gradient w.r.t. : 0|)|(
)(ˆ   z

zp    

Or 0|)|(ln
)(ˆ   z

zp    

,...]/,/[ 21    

 





J

j
ixpzp

1

)|()|(   

J samples, assumed independent. 

 

ln p(z|)=


J

j 1

ln p(xj|) 

0)}|({ln)]|([ln
1

 


 

J

j
jxpzp  

Solution ̂  = maximum likelihood. 

ML Example 1 (DHS 3.2.2) 

Multivariate normal, unknown mean, known variance. N(xj,m,) 





J

j
ixpzp

1

)|()|(   

ln p(z|)=


J

j 1

ln p(xj|) 

(Drop vector and matrix notations) 

For normal density: 

ln p(xj|m) = -1/2 ln{(2)J||} – 1/2 (xj-m)T-1(xj-m) 

 

)()]|([ln 1 mxmxp jjm    

0)ˆ(|)]|([ln
1

1
ˆ  




 mxmzp j

J

j
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J

j 1

xj=


J

j 1

m̂= mJ ˆ  

m̂=1/J 


J

j 1

xj              The sample mean estimate is the ML estimate. 
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ML Example 2 (DHS 3.2.3) 

Univariate normal, unknown mean, unknown variance. 

 

=[1, 2]= [m, 2] 

 

ln[p(xj|)]=-1/2 ln[22]-1/22(xj-1)2 
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Univariate case 

 jx
J

m
1

ˆˆ
1  (sample mean) 

22
2 )ˆ(

1
ˆˆ   mx

J j  (sample variance) 

Note: 2̂  is a biased estimate. 

 

 

 

 

Multivariate case yields: 
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Note: ̂  is a biased estimate. 

 

 


