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Parameter Estimation (DHS Ch. 3)

Not all statistics known (remember Case 2 & 3)

Two techniques for estimating p(x|S;), assumed not known a priori

1.

Outline

Parametric — Functional form of p(x|S;) is known or assumed. Estimate parameters.
(DHS Ch. 3 & Review Table 3.1 on the next page)

Example: p(x|Si)=N(x,m;,2;)

Estimate m; and X; from training samples

Two approaches: maximum likelihood — (1) ML estimation and (2) Maximum a
Posterior (MAP) estimation (i.e., Bayesian estimation)

Nonparametric: estimate the density functions themselves. (DHS Ch. 4)

Introduction

Properties of an estimate

Ad Hoc estimates

Maximum Likehihood (ML) Estimate

ML examples

Estimation of random parameters

Minimum mean square error (MMSE) estimate
Maximum a Posteriori (MAP) estimate
Estimation summary

Bayes classifier

Learning the mean of a normal density

B Multivariate Extension

General Bayesian learning

B Recursive Bayesian learning

Practical problems — Dimensionality
Component Analysis and Fisher Linear Discriminant (Later)
Markov Models (?)

Hidden Markov Models (?)
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Table 3.1: Common Exponential Distributions and their Sufficient Statistics.
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Preliminaries (DHS 3.1)

Previously, we designed an optimal classifier if the prior probabilities and the class-

conditional densities are known.

However, we rarely have this kind of complete knowledge about the probabilistic

structure of the problems

Now, use the samples to estimate the unknown probabilities and probability densities

Estimation of the prior probabilities in supervised classification is not a serious

problems, but not the class-conditional densities

At least, assume probability density functions with unknown parameters

Two common and reasonable procedures: maximum-likelihood (ML) estimation and

Bayes estimation

ML views the parameters as quantities as fixed values, but unknown (Fig. 3.1)

Bayesian views the parameters as random variables (Fig. 3.2)

Bayesian learning: observing additional samples sharpens the posteriori densities,

causing it to peak near the true values of the parameters (Fig. 3.2)

Maximum-Likelihood vs. Bayesian Maximum A Posteriori (DHS 3.2.1)

Key concepts

IID = independent and identically distributed random variables

Likelihood = p(D|9)  (See Fig. 3.1)
Log-Likelihood /(0)= In{p(D|6)}  (See Fig. 3.1)

Maximum A Posterior and Mode (See right below & Fig. 3.2))

Fig. 3.1 vs. Fig. 3.2
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MAP: 5.45
Mean: 5.34

MAP estimation
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Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|#) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked #; it also maximizes the logarithm
of the likelihood — i.e.. the log-likelihood [(#), shown at the bottom. Note especially
that the likelihood lies in a different space from pl_':|l)}. and the two can have different
functional forms.

-

Figure 3.2: Bayesian learning of the mean of normal distributions in one and two di-
mensions. The posterior distribution estimates are labelled by the number of training
samples used in the estimation.
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Introduction

Let 6 be a vector of fixed but unknown parameters.

Let 6 be an estimate of 0.

0 is deterministic. € is random

Let x1, X2, ... be random sample vectors drawn from the density to be estimated.

The xi’s are assumed independent and (usually) identically distributed.

Let z=[ x1,X2, ..., X1]

The estimate ﬁ : é =G(x1,X2, ... , X1)=G(z)= é (z) => é =random.

A

Properties of an estimate 0

Unbiased estimate (most important)

IfE{ é 1=[G(2)p(2)dz=6 then ﬁ is an unbiased estimate of 0. Otherwise ﬁ is biased.

Consistent estimate

Plimd = 6" Probability limit of & => lim P{‘é - 9*‘ > gl >0

é is a consistent estimate of & if Plimé =0

Efficient estimate

Unbiased and have the smallest possible error variance.

Var( é )< Var( é ), then ﬁ is more efficient than é

Sufficient estimate

An estimate is called sufficient for 0 if it contains all information about 6 which is contained in

Z.
é 1(z) is a sufficient estimate iff for any other estimates ﬁ A2), ..., ﬁ N(2),
the conditional density function of ﬁ 2A2), ..., é N(z) given 6 1(z) does not depend on 6.
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p(éz, é%---, éN|é1,6):f(él, éz,---, éN)

.. The best estimate would be: unbiased, consistent, efficient, and sufficient.

Ad Hoc estimates

Moment estimates:

Sample mean vector

J
ﬁ=1/J ij
=

E{m }=m => unbiased.

Sample is unbiased.

Sample correlation estimate (no mean removed)

J
S=11 ) xx
j=1

This 1s unbiased, consistent.

Sample covariance estimate (mean removed)

J
=13 Y (ki) (i)

j=1

Is i unbiased? It is a biased estimate.

An unbiased estimate can be obtained:
J

=100 (- (x4 )T
J=1

If x; are normal, ﬁ is normal.

If xj are arbitrary, m tends to normal by the central limit theorem.
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Maximum Likelihood Estimate (DHS 3.2.1)

Estimate ﬁ (6 = fixed but unknown)

The maximum likelihood (ML) estimate ﬁ of 0 is that value é which maximizes p(z|0).

Can find this by maximizing In(p(z|0)) w.r.t. 0.

The ML estimate is the est. that maximizes the probability of obtaining the samples actually

observed.
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How to Maximize Likelihood

Maximize p(z|0) w.r.t 0.

Gradient w.r.t. 0: V,p(z|60)] 0

0=0(z)"

Or V,Inp(z|0)| 0

0=0(z) "

V,=[0/86,8/06,,.]

p(z10) ZHP(L- 10)

J samples, assumed independent.

In p(z/0)= Z In p(xi0)

Jj=1

Vllnp(z]0)]= 2V, {In p(x,10)} =0

j=1
Solution ﬁ = maximum likelihood.

ML Example 1 (DHS 3.2.2)

Multivariate normal, unknown mean, known variance. N(x;,m,X)

pz|®)=]]prx, 10

J=1
J
Inp(zl0)=) Inp(x|0)
j=1

(Drop vector and matrix notations)
For normal density:

In p(xiim) = -1/2 In{2n)'[Z[} — 1/2 (x;-m)"X" (x;-m)

Vu[In p(x; [m)] =27 (x; —m)

v, [In p(z [ m)]l, = 227 (x; —i) = 0

Jj=1

J
m=1/] Z Xj The sample mean estimate is the ML estimate.
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ML Example 2 (DHS 3.2.3)

Univariate normal, unknown mean, unknown variance.

0=[01, 0,]= [m, 6%

In[p(x;|0)]=-1/2 In[27t02]-1/20(x;-01)?

Volln p(x; [0)]=[1/0,(x; —0,).,-1/20, +1/203 (x; -6,)°]
Vollnp(z|0)],_4 =

J

ZAL (x;=6))=0
‘92

L1
Z——-i——Z(x -6,)% =

1 20, 2‘92 J=1

~.

Univariate case

== —Z x; (sample mean)

, =% = lZ( X, =My (sample variance)

>

AD . . .
Note: o is a biased estimate.

Multivariate case yields:

=—Zx

A

X=

1
72:: X; —m)(x -m)’

Note: i is a biased estimate.




