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(Revisit DHS 2.6)

Examples: Baves Minimum Error for Normal Density
Given: p(x|Sk)=N(x,mx,2 k)

1 -
T e exp {-1/2(x-m) ! (x-my)}

That is the likelihood is normal!

Want to maximize p(x|Si)P(Si)

Choose gi(x)=In[p(x|Si)P(S;)]=In p(x|Si)+In P(S;) <- DHS p. 36 Eq. (48)
gi(x)=-1/2In[2i|-1/2(x-mi) "2 (x-mi)+InP(S;) (B1)

Note if [21=[2f=...

And P(S1)=P(S,)=... then <- called uniform priors

gi(x)=-(x-m;) "X !(x-m;) <- assign x to the closest mean of the class

= minimum Mahalanobis distance to class means classifier.

Comments
— Include InP(S;) term => decision surface shifts to favor class with larger P(S;).

- -1/2In]%| term incorporates differing ellipsoids form one class to another.

gi(x)=-1/2In2i|-1/2dm?*(x,m;)+nP(S;) (B1 again)
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[REVIEW]

Let’s go back to Case 1, 2, and 3 again.

Case 1: (Revisit DHS 2.6.1)

- Features are statistically independent

- Each feature has the same variance o>

Yi=c’1

sz(K,mi)zl/Gz dgz(&mi)

|2.i=|2|=independent of i

gi(x)=-1/(26%)(x - my)"(x - my) + InP(S;)

gi(x)= 1/(26*)(2x"'m; - mi"m;) + InP(S;) we can drop x"x since same for all i
Note: it’s linear: gi(x)=wTx+wlx;

wd=2 wiy=2

Minimum Euclidean distance to class means except favors classes with higher a priori

probability.

Review Fig. 2.10 & Fig. 2.11 again.
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Case 2: (DHS 2.6.2)

> Same for different classes

dv?=hyperellipsoid
gi(x)=-1/2 (x - m) "X (x - m;) + InP(Ss)

dv=constant surfaces are identically hyperellipsoids

=>» classifier is linear

gi(x)=wTx+wiy

wi=9 Wi =2

Review Fig. 2.12 again.



KHU-BME
Pattern Classification
Lecture 10

Case 3 (DHS 2.6.3)
Yi=arbitrary

dv?(x,m;)=different for each class S;

x2'x does not drop out.

= g;are not linear.

Hyperquadractic decision surface (polynomials of degree 2)

Can express as: gi(xX)=x'Wix + wiTx + wiy,;  (B2)

Hyperquadractic decision surface
Hyperellipsoid
Hyperhyperboloid
Hyperparaboloid

Hypersphere

= Revisit Fig. 2.14, Fig. 2.15, and Fig. 2.16
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How to calculate W® and w® for (B2)

gi(x)=-1/2In2i|-1/2(x-m) T2 ; "}(x-m;)+InP(S;)

=-1/2x"27 % + 1/2[x"2 'm + mTY!x] + (constant of x terms)

12[x 2 'mi+ mi "3 x]=1/2[ (2 'mi) 'x + miTX ']
=1/2[(Z ' my) % + (C'my)"x]
=i 'm)x

gi(x)=x"[-1/22"1x + [Z'mi]"x + (constant of x terms)
General Bayes minimum error, normal densitites:
gi(x)=x"W0x + wOTx + wy ¥

= WO=_1/23;" (DHS p. 41 Eq. (67))

wi=¥;m; (DHS p. 41 Eq. (68))
w1 =-1/21n] 2| -1/2m"%'mi + In P(S;) (DHS p. 41 Eq. (69))
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Example 1 (DHS p. 44)

| Example 1: Decision regions for two-dimensional Gaussian daml

To clarify these ideas, we explicitly calculate the decision boundary for the two-
category two-dimensional data in the Example figure. Let wy be the set of the four
black points, and ws the red points. Although we will spend much of the next chapter
understanding how to estimate the parameters of our distributions, for now we simply
assume that we need merely calculate the means and covariances by the discrete
versions of Egs. 39 & 40; they are found to be:

e[t me (8 8) 3] 5

The inverse matrices are then,

o I3 @ 4 (12 0
21‘(01/2) - 2:9‘(0 1/2)'
We assume equal prior probabilities, P(w;) = P(ws) = 0.5, and substitute these into

the general form for a discriminant, Eqgs. 64 — 67, setting g, (x) = ga2(x) to obtain the
decision boundary:

(=1 L]

I3 = 3.514 — 1.125x + 0.18751].

This equation describes a parabola with vertex at (,%3,). Note that despite the
fact that the variance in the data along the 2 direction for both distributions is the
same, the decision boundary does not pass through the point (‘;) midway between
the means, as we might have naively guessed. This is because for the w; distribution,
the probability distribution is “squeezed” in the ry-direction more so than for the wy
distribution. Because the overall prior probabilities are the same (i.e., the integral over
space of the probability density), the distribution is increased along the ry direction
(relative to that for the wy distribution). Thus the decision boundary lies slightly
lower than the point midway between the two means, as can be seen in the decision
boundary.

The computed Bayes decision boundary for two Gaussian distributions, each based
on four data points.




