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Statistical Classification

- Main Assumption: The prototypes (and unknown) are drawn from an underlying statistical

distribution.

- Bayes Decision Theory: Assumes all statistics are known.

- Parametric: Probability density functions (p.d.f's) are known or assumed. Parameters are

unknown.

- Nonparametric: Estimate p.d.f's or use other statistical techniques.

Bayes Decision Theory

- Based on quantifying the tradeoffs between various decisions using probability and
the costs that accompany such decisions

- All of the relevant probability values are known.

Outline
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—  Error Probabilites and Likelihood Ratio

—  Probability of Error: Examples
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Introductory Example

Aerial images
Classify — land, water
Si=land

S,=water

-> Feature Extractor -> Classifier ->
A priori probabilities:

p(51)=0.3

p(S2)=0.7

Prior probabilities reflect our prior knowledge of how likely we are to get S; or S,.

If unknown,

Crude estimates of probabilities:

M
P(S;)=——*

2 My
k=1

Decision Rule

- Decide S; iff P(S1)>P(S))

- This rule makes sense if we are to judge just one fish, but not for many fish

Features

- Let's use feature information to improve the classifier

= X1 lplue

- Xp o« T="feature regularity”

- x=feature vector

- p(x1|S2)=p(lpwe |water)=class-conditional p.d.f.

- That is the probability density function for x given that the state of nature is S;

- p(x|Si)=class-conditional p.d.f. (or state-conditional p.d.f) also likelihood of Sy w.rt. x

- Bayes Decision Theory: assume p(x|S;) are known and that P(S;) are known.
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Review: Bayes Statistics and Probability
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Bayes Formula

p(S4|x)=?=a posteriori probability

p(x| S )P(Sy) k=12
pxy

P(Sy |x)=
- In English
Posterior = (Likelihood x Prior) / Evidence

Likelihood =>  p(x|Sy)

Prior =>  p(Sy)

fvidence = p(x) =Y p(x| S,)P(S,)

k=1

- Bayes formula converts the prior probability p(Sy) to a posteriori probability (or
posterior) p(Sy|x): the probability of the state of nature being Sy given that feature

value x has been measured.

- p(x|S=the likelihood of Sy with respect to x, a term to indicate the category Sy for

which p(x|Sy) is large is more likely to be the true category.

— The posterior depends on the likelihood and the prior as the product.
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Bayes Decision Rule for Minimum Error (2-class)

P(S1lx) > p(Salx) => xeSq

P(Salx) > p(S4lx) => xeS,

Use Bayes Theorem

p(x| S )P(Sy)

P(Sy | x)= )

K
p(x) =D p(x|SP(S,)
k=1

Bayes decision rule for minimum error (2-class)

PX|S1)p(S1) > p(X[S2)p(S2) => x € Sy
P(X|S1)p(S1) < p(X[S)p(S2) => x € S;

Rearrange:
px[S) _ P(Sy) xS,
p(x[S,) P(S)

< => XeS§;

Likelihood ratio, 1(x) = 251
p(x]S,)

P(S
(55) =T = threshold value

P(S))
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Log Likelihood ratio

h)=-In[1x) 1 = In [p(X|S2) ] = In [ p(x|S1) | < In [P(S1)/ P(S) 1 => x e S;

Error probabilities

Def. of Prob. Error => Pe=p(S1)Ir2 p(x|Sq)dx + p(Sz)Jm p(x|S2)dx

Minimize Pe

Integrands > 0 always

= assign x to S; when p(x|SP(S2) < p(xIS1)P(S:)

Bayes minimum error classifier

Iy: p(Sq|x)>P(S2[x)
o0 p(Sq|x) <P(Sa[x)
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Bayes Decision Rule for Minimum Risk (2-class)

Generalize Bayes minimum error.
e Cost of different classification errors may be different.

e Let C(S4Sj)=Cost of classifying x as S, when it should be S;.

C(Sk|Sj)=ij in DHS }\'kj (page 24)
C(S2|S1) > C(S$4]S1) or Cy > Gy
C(S11S2) > C(S2|Sz) or Cyp > Cyp

¢, C
Ez{ 11 12}
Cy Cp

Conditional average loss or risk = R(S/x)
R(S1[¥)=C(S4|S1)P(S4]x) + C(S1[S2)P(S2[x)
R(S2|x)=C(S,|S1)P(S1]x) + C(S2|S2)P(S2[x)

Decision rule — take the action that minimizes the total expected risk.
Total expected risk:
R= Jri RSI0PXdX + [r2 R(S2x)p)dx

Choose I'y and T'; so R is minimum, i.e., so R(Sy|x) is minimum for each x.
= decide Sy if R(S4[x) < R(S2|x)
= decide S; if R(S4[x) > R(Sz[x)

Decision Rule (Minimum Risk Classfier)
St
RSO < RS
>

S2



KHU-BME
Pattern Classification
Lecture 08

Express in terms of known densities and Cj:
<
C11P(S1|§) + C12P(52|Z) S C21P(S1|§) + C22P(Sz|§)
<
(C11-C21)P(S4(x) . (C22-C12)P(S;x)

P(Skx) = P(Sp(X|SK)/p(x)

>
(Cx1- C11)p(§|S1)P(S1) < (Cya sz)p(ﬁsz)P(Sz)

p(x|S))>(C, —Cy) P(S,)
p(x|S,)<(Cy —Cy)) P(S))

Likelihood ratio, Ax) =

Note: if C11=0, Ci,=1, C31=1, C»»=0

S)>P(S
I(x) = px|[S,) (S5) => Bayes minimum error rule.

- p(x|S,)<P(S))




