Statistical Classification

- Main Assumption: The prototypes (and unknown) are drawn from an underlying statistical distribution.

- Bayes Decision Theory: Assumes all statistics are known.

- Parametric: Probability density functions (p.d.f's) are known or assumed. Parameters are unknown.

- Nonparametric: Estimate p.d.f.'s or use other statistical techniques.

Bayes Decision Theory

- Based on quantifying the tradeoffs between various decisions using probability and the costs that accompany such decisions
- All of the relevant probability values are known.

Outline

- Introductory Example
- Bayes Decision Rule for Minimum Error (2-Class)
- Bayes Decision Rule for Minimum Risk (2-Class)
- Discriminant Functions
- Bayes Minimum Error Multiple Classes
- Bayes Minimum Risk Multiple Classes
- Special Cases
- Review of Bayes Decision Theory
- Mahalanobis Distance
- Example Bayes Minimum Error for Normal Density
- Error Probabilites and Likelihood Ratio
- Probability of Error: Examples

Introductory Example

Aerial images Classify – land, water S_1 =land S_2 =water

-> Feature Extractor -> Classifier ->

A priori probabilities: $p(S_1)=0.3$ $p(S_2)=0.7$

Prior probabilities reflect our prior knowledge of how likely we are to get S_1 or S_2 .

If unknown,

Crude estimates of probabilities:

$$
P(S_k) = \frac{M_k}{\sum_{k=1}^{K} M_k}
$$

Decision Rule

- Decide S_1 iff $P(S_1) > P(S_2)$
- This rule makes sense if we are to judge just one fish, but not for many fish

Features

- Let's use feature information to improve the classifier
- $x_1 \propto I_{blue}$
- $x_2 \propto T$ ="feature regularity"
- x=feature vector
- $p(x_1|S_2)=p(I_{blue}$ |water)=class-conditional p.d.f.
- That is the probability density function for x given that the state of nature is S_1
- $p(x|S_i)$ =class-conditional p.d.f. (or state-conditional p.d.f) also likelihood of S_1 w.r.t. x
- Bayes Decision Theory: assume $p(x|S_i)$ are known and that $P(S_i)$ are known.

Review: Bayes Statistics and Probability

Bayes Formula

 $p(S_1|\underline{x})=?=a$ posteriori probability

$$
P(S_k | \underline{x}) = \frac{p(\underline{x} | S_k) P(S_k)}{p(\underline{x})}, k = 1, 2
$$

- In English

Posterior = (Likelihood x Prior) / Evidence

Likelihood => $p(x|S_k)$

Prior $=$ $p(S_k)$

Evidence => $p(\underline{x}) = \sum_{k=1}^{n}$ 2 1 $(\underline{x}) = \sum p(\underline{x} | S_{k}) P(S_{k})$ k $p(\underline{x}) = \sum p(\underline{x} | S_k) P(S_k)$

- Bayes formula converts the prior probability $p(S_k)$ to a posteriori probability (or posterior) $p(S_k|x)$: the probability of the state of nature being S_k given that feature value x has been measured.
- $p(x|S_k)$ =the likelihood of S_k with respect to x, a term to indicate the category S_k for which $p(x|S_k)$ is large is more likely to be the true category.
- The posterior depends on the likelihood and the prior as the product.

Bayes Decision Rule for Minimum Error (2-class)

 $p(S_1|\underline{x})$ > $p(S_2|\underline{x})$ => $\underline{x} \in S_1$ $p(S_2|x) > p(S_1|x) = > x \in S_2$

Use Bayes Theorem

$$
P(S_k | \underline{x}) = \frac{p(\underline{x} | S_k)P(S_k)}{p(\underline{x})}
$$

$$
p(\underline{x}) = \sum_{k=1}^{K} p(\underline{x} | S_k)P(S_k)
$$

Bayes decision rule for minimum error (2-class)

 $p(x|S_1)p(S_1) > p(x|S_2)p(S_2) \Rightarrow x \in S_1$ $p(\underline{x}|S_1)p(S_1)$ < $p(\underline{x}|S_2)p(S_2)$ => $\underline{x} \in S_2$

Rearrange: (S_1) (S_2) $\left(\underline{x} | S_{2} \right)$ $\left(\underline{x} \mid S_1 \right)$ 1 2 2 1 $P(S)$ $P(S)$ $p(x|S)$ $\frac{p(x | S_1)}{p(S_2)} > \frac{P(S_2)}{P(S_2)} = > x \in S_1$ \leq => $\underline{x} \in S_2$ Likelihood ratio, $l(\underline{x}) = \frac{P(\underline{x} | \underline{x})}{p(\underline{x} | S_2)}$ $(\underline{x}) = \frac{p(\underline{x} | S_1)}{(\underline{x} | S_2)}$ 2 1 $p(x|S)$ $l(\underline{x}) = \frac{p(\underline{x} \mid S_1)}{n(\underline{x} \mid S_2)}$ T $P(S_1)$ $\frac{P(S_2)}{P(S_1)} =$ (S_1) (S_2) 1 $\frac{2J}{r} = T$ = threshold value

Log Likelihood ratio

 $h(\underline{x}) = -\ln[\ |(\underline{x})\] = \ln[\ p(\underline{x}|S_2)\] - \ln[\ p(\underline{x}|S_1)\] < \ln[\ P(S_1)/\ P(S_2)\] = > \underline{x} \in S_1$

Error probabilities

$$
\text{Def. of Prob. Error} \quad \text{=} \quad P_e = p(S_1) \int_{\Gamma_2} p(\underline{x} | S_1) dx + p(S_2) \int_{\Gamma_1} p(\underline{x} | S_2) dx
$$

Minimize P^e

Integrands ≥ 0 always \Rightarrow assign x to S₁ when $p(x|S_2)P(S_2)$ < $p(x|S_1)P(S_1)$

Bayes minimum error classifier

 Γ_1 : $p(S_1|\underline{x}) > P(S_2|\underline{x})$ Γ_2 : $p(S_1 | \underline{x}) < P(S_2 | \underline{x})$

Bayes Decision Rule for Minimum Risk (2-class)

Generalize Bayes minimum error.

- Cost of different classification errors may be different.
- Let $C(S_k|S_j)$ =Cost of classifying \underline{x} as S_k when it should be S_j .

 $C(S_k|S_i)=C_{ki}$ in DHS λ_{ki} (page 24) $C(S_2|S_1) > C(S_1|S_1)$ or $C_{21} > C_{11}$ $C(S_1|S_2) > C(S_2|S_2)$ or $C_{12} > C_{22}$

$$
\underline{\underline{C}} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}
$$

Conditional average loss or risk = $R(S_k|x)$ $R(S_1|x)=C(S_1|S_1)P(S_1|x) + C(S_1|S_2)P(S_2|x)$ $R(S_2|x)=C(S_2|S_1)P(S_1|x) + C(S_2|S_2)P(S_2|x)$

Decision rule – take the action that minimizes the total expected risk.

Total expected risk:

 $R = \int_{\Gamma_1} R(S_1|\underline{x})p(\underline{x})d\underline{x} + \int_{\Gamma_2} R(S_2|\underline{x})p(\underline{x})d\underline{x}$

Choose Γ_1 and Γ_2 so R is minimum, i.e., so R(S_k|x) is minimum for each x.

 \Rightarrow decide S₁ if R(S₁|x) < R(S₂|x)

 \Rightarrow decide S₂ if R(S₁|x) > R(S₂|x)

Decision Rule (Minimum Risk Classfier)

$$
S_1
$$

\n
$$
R(S_1|\underline{x}) \leq R(S_2|\underline{x})
$$

\n
$$
S_2
$$

Express in terms of known densities and C_{ij} :

$$
C_{11}P(S_1|\underline{x}) + C_{12}P(S_2|\underline{x}) \leq C_{21}P(S_1|\underline{x}) + C_{22}P(S_2|\underline{x})
$$

$$
(C_{11}-C_{21})P(S_1|\underline{x}) \leq (C_{22}-C_{12})P(S_2|\underline{x})
$$

$$
P(S_k|\underline{x}) = P(S_k)p(x|S_k)/p(\underline{x})
$$

$$
(C_{21}. \ C_{11})p(\underline{x}|S_1)P(S_1) > (C_{12}. \ C_{22})p(\underline{x}|S_2)P(S_2)
$$

Likelihood ratio, $l(\underline{x}) = \frac{P(\underline{x} | \underline{x}_1)}{p(\underline{x} | S_2)} \leq \frac{C_{12}C_{22}}{(C_{21} - C_{11})} \frac{P(S_1)}{P(S_1)}$ (S_2) $(C_{21} - C_{11})$ $(C_{12} - C_{22})$ $(\underline{x} | S_2)$ $(x | S_1)$ 1 2 $_{21} - 11$ $_{12} - 22$ 2 1 $P(S,$ $P(S)$ $C_{21} - C_1$ $C_{12} - C_2$ $p(x|S)$ $p(x|S)$ $\overline{}$ \overline{a} \lt \geq

Note: if $C_{11}=0$, $C_{12}=1$, $C_{21}=1$, $C_{22}=0$

$$
I(\underline{x}) = \frac{p(\underline{x} \mid S_1)}{p(\underline{x} \mid S_2)} < \frac{P(S_2)}{P(S_1)} \implies \text{Bayes minimum error rule.}
$$