Statistical Classification

- Main Assumption: The prototypes (and unknown) are drawn from an underlying statistical distribution.

- Bayes Decision Theory: Assumes all statistics are known.

- **Parametric**: Probability density functions (p.d.f's) are known or assumed. Parameters are unknown.

- Nonparametric: Estimate p.d.f.'s or use other statistical techniques.

Bayes Decision Theory

- Based on quantifying the tradeoffs between various decisions using probability and the costs that accompany such decisions
- All of the relevant probability values are known.

Outline

- Introductory Example
- Bayes Decision Rule for Minimum Error (2-Class)
- Bayes Decision Rule for Minimum Risk (2-Class)
- Discriminant Functions
- Bayes Minimum Error Multiple Classes
- Bayes Minimum Risk Multiple Classes
- Special Cases
- Review of Bayes Decision Theory
- Mahalanobis Distance
- Example Bayes Minimum Error for Normal Density
- Error Probabilites and Likelihood Ratio
- Probability of Error: Examples

Introductory Example

Aerial images Classify – land, water S_1 =land S_2 =water

-> Feature Extractor -> Classifier ->

A priori probabilities: $p(S_1)=0.3$ $p(S_2)=0.7$

Prior probabilities reflect our prior knowledge of how likely we are to get S1 or S2.

If unknown,

Crude estimates of probabilities:

$$P(S_k) = \frac{M_k}{\sum_{k=1}^{K} M_k}$$

Decision Rule

- Decide S_1 iff $P(S_1) > P(S_2)$
- This rule makes sense if we are to judge just one fish, but not for many fish

Features

- Let's use feature information to improve the classifier
- $x_1 \propto \, I_{blue}$
- $x_2 \propto$ T="feature regularity"
- \underline{x} =feature vector
- $p(x_1|S_2)=p(I_{blue} |water)=class-conditional p.d.f.$
- That is the probability density function for x given that the state of nature is S_1
- $p(\underline{x}|S_i)$ = class-conditional p.d.f. (or state-conditional p.d.f) also likelihood of S₁ w.r.t. \underline{x}
- Bayes Decision Theory: assume $p(\underline{x}|S_i)$ are known and that $P(S_i)$ are known.

Review: Bayes Statistics and Probability

Bayes Formula

 $p(S_1|\underline{x}) = ?=a$ posteriori probability

$$P(S_k \mid \underline{x}) = \frac{p(\underline{x} \mid S_k)P(S_k)}{p(\underline{x})}, \ k=1,2$$

- In English

Posterior = (Likelihood x Prior) / Evidence

Likelihood => $p(x|S_k)$

Prior => $p(S_k)$

Evidence => $p(\underline{x}) = \sum_{k=1}^{2} p(\underline{x} | S_k) P(S_k)$

- Bayes formula converts the prior probability $p(S_k)$ to a posteriori probability (or posterior) $p(S_k|\underline{x})$: the probability of the state of nature being S_k given that feature value \underline{x} has been measured.
- $p(\underline{x}|S_k)$ =the likelihood of S_k with respect to \underline{x} , a term to indicate the category S_k for which $p(x|S_k)$ is large is more likely to be the true category.
- The posterior depends on the likelihood and the prior as the product.

Bayes Decision Rule for Minimum Error (2-class)

 $p(S_1|\underline{x}) > p(S_2|\underline{x}) => \underline{x} \in S_1$ $p(S_2|\underline{x}) > p(S_1|\underline{x}) => \underline{x} \in S_2$

Use Bayes Theorem

$$P(S_k \mid \underline{x}) = \frac{p(\underline{x} \mid S_k)P(S_k)}{p(\underline{x})}$$
$$p(\underline{x}) = \sum_{k=1}^{K} p(\underline{x} \mid S_k)P(S_k)$$

Bayes decision rule for minimum error (2-class)

 $\begin{array}{l} p(\underline{x}|S_1)p(S_1) > p(\underline{x}|S_2)p(S_2) => \underline{x} \in S_1 \\ p(\underline{x}|S_1)p(S_1) < p(\underline{x}|S_2)p(S_2) => \underline{x} \in S_2 \end{array}$

Rearrange:

$$\frac{p(\underline{x} \mid S_1)}{p(\underline{x} \mid S_2)} > \frac{P(S_2)}{P(S_1)} \implies \underline{x} \in S_1$$

$$< \implies \underline{x} \in S_2$$
Likelihood ratio, $l(\underline{x}) = \frac{p(\underline{x} \mid S_1)}{p(\underline{x} \mid S_2)}$

$$\frac{P(S_2)}{P(S_1)} = T = \text{threshold value}$$

Log Likelihood ratio

 $h(\underline{x}){=}{-}ln[\ l(\underline{x})\] \ {=}\ ln\ [\ p(\underline{x}|S_2)\] \ {-}\ ln\ [\ p(\underline{x}|S_1)\] \ {<}\ ln\ [\ P(S_1)/\ P(S_2)\] \ {=}{>}\ \underline{x}\ {\in}\ S_1$

Error probabilities

Def. of Prob. Error => $P_e = p(S_1)\int_{\Gamma_2} p(\underline{x}|S_1)dx + p(S_2)\int_{\Gamma_1} p(\underline{x}|S_2)dx$

 $\underline{\text{Minimize } P_e}$

 $\label{eq:linearized_linear} \begin{array}{l} \mbox{Integrands} \geq 0 \mbox{ always} \\ \mbox{\Rightarrow} \mbox{ assign } \underline{x} \mbox{ to } S_1 \mbox{ when } p(\underline{x}|S_2) P(S_2) < p(\underline{x}|S_1) P(S_1) \end{array}$

Bayes minimum error classifier

 $\Gamma_1: p(S_1|\underline{x}) > P(S_2|\underline{x})$ $\Gamma_2: p(S_1|\underline{x}) < P(S_2|\underline{x})$

Bayes Decision Rule for Minimum Risk (2-class)

Generalize Bayes minimum error.

- Cost of different classification errors may be different.
- Let C(S_k|S_j)=Cost of classifying <u>x</u> as S_k when it should be S_j.

 $\begin{array}{ll} C(S_k|S_j) = C_{kj} & \mbox{in DHS } \lambda_{kj} \mbox{ (page 24)} \\ C(S_2|S_1) > C(S_1|S_1) \mbox{ or } C_{21} > C_{11} \\ C(S_1|S_2) > C(S_2|S_2) \mbox{ or } C_{12} > C_{22} \end{array}$

$$\underline{\mathbf{C}} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

Conditional average loss or risk = $R(S_k|\underline{x})$ $R(S_1|\underline{x})=C(S_1|S_1)P(S_1|\underline{x}) + C(S_1|S_2)P(S_2|\underline{x})$ $R(S_2|\underline{x})=C(S_2|S_1)P(S_1|\underline{x}) + C(S_2|S_2)P(S_2|\underline{x})$

Decision rule - take the action that minimizes the total expected risk.

Total expected risk:

 $R = \int_{\Gamma_1} R(S_1|\underline{x})p(\underline{x})d\underline{x} + \int_{\Gamma_2} R(S_2|\underline{x})p(\underline{x})d\underline{x}$

Choose Γ_1 and Γ_2 so R is minimum, i.e., so $R(S_k|\underline{x})$ is minimum for each \underline{x} .

 \Rightarrow decide S₁ if R(S₁|<u>x</u>) < R(S₂|<u>x</u>)

 \Rightarrow decide S₂ if R(S₁|<u>x</u>) > R(S₂|<u>x</u>)

Decision Rule (Minimum Risk Classfier)

$$R(S_1|\underline{x}) < R(S_2|\underline{x})$$

$$>$$

$$S_2$$

Express in terms of known densities and $\mathsf{C}_{ij}\!:$

$$C_{11}P(S_{1}|\underline{x}) + C_{12}P(S_{2}|\underline{x}) \stackrel{<}{>} C_{21}P(S_{1}|\underline{x}) + C_{22}P(S_{2}|\underline{x})$$

$$(C_{11}-C_{21})P(S_{1}|\underline{x}) \stackrel{<}{>} (C_{22}-C_{12})P(S_{2}|\underline{x})$$

$$P(S_{k}|\underline{x}) = P(S_{k})p(x|S_{k})/p(\underline{x})$$

$$(C_{21-} C_{11})p(\underline{x}|S_1)P(S_1) > (C_{12-} C_{22})p(\underline{x}|S_2)P(S_2) < <$$

Likelihood ratio, $l(\underline{x}) = \frac{p(\underline{x} \mid S_1)}{p(\underline{x} \mid S_2)} < \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \frac{P(S_2)}{P(S_1)}$

Note: if C₁₁=0, C₁₂=1, C₂₁=1, C₂₂=0

$$l(\underline{x}) = \frac{p(\underline{x} | S_1) > P(S_2)}{p(\underline{x} | S_2) < P(S_1)} \implies \text{Bayes minimum error rule.}$$