
1 Getting Started

Support Vector Machines (SVM)

In this section...

“Understanding Support Vector Machines” on page 1-36

“Using Support Vector Machines” on page 1-42

“Nonlinear Classifier with Gaussian Kernel” on page 1-44

“SVM Classification with Cross Validation” on page 1-48

“References” on page 1-57

Understanding Support Vector Machines

• “Separable Data” on page 1-36

• “Nonseparable Data” on page 1-39

• “Nonlinear Transformation with Kernels” on page 1-41

Separable Data
You can use a support vector machine (SVM) when your data has exactly two
classes. An SVM classifies data by finding the best hyperplane that separates
all data points of one class from those of the other class. The best hyperplane
for an SVM means the one with the largest margin between the two classes.
Margin means the maximal width of the slab parallel to the hyperplane that
has no interior data points.

The support vectors are the data points that are closest to the separating
hyperplane; these points are on the boundary of the slab. The following figure
illustrates these definitions, with + indicating data points of type 1, and –
indicating data points of type –1.

1-36

Support Vector Machines (SVM)

+

+

+

+

-
-

-

-

-
Separating hyperplane

M
aargin

Support
vector

Support
vector

Support
vector

Mathematical Formulation: Primal. This discussion follows Hastie,
Tibshirani, and Friedman [3] and Christianini and Shawe-Taylor [2].

The data for training is a set of points (vectors) xi along with their categories
yi. For some dimension d, the xi Rd, and the yi = ±1. The equation of a
hyperplane is

<w,x> + b = 0,

where w Rd, <w,x> is the inner (dot) product of w and x, and b is real.

The following problem defines the best separating hyperplane. Find w and b
that minimize ||w|| such that for all data points (xi,yi),

yi(<w,xi> + b) ≥ 1.

The support vectors are the xi on the boundary, those for which
yi(<w,xi> + b) = 1.

For mathematical convenience, the problem is usually given as the equivalent
problem of minimizing <w,w>/2. This is a quadratic programming problem.
The optimal solution w, b enables classification of a vector z as follows:

class(z) = sign(<w,z> + b).

1-37

1 Getting Started

Mathematical Formulation: Dual. It is computationally simpler to solve
the dual quadratic programming problem. To obtain the dual, take positive
Lagrange multipliers αi multiplied by each constraint, and subtract from
the objective function:

L w w y w x bP i i i
i

= − +() −()∑1
2

1, , ,

where you look for a stationary point of LP over w and b. Setting the gradient
of LP to 0, you get

w y x

y

i i i
i

i i
i

=

=

∑

∑

0 .
(1-1)

Substituting into LP, you get the dual LD:

L y y x xD i
i

i j i j i j
ji

= −∑ ∑∑
1
2

, ,

which you maximize over αi ≥ 0. In general, many αi are 0 at the maximum.
The nonzero αi in the solution to the dual problem define the hyperplane, as
seen in Equation 1-1, which gives w as the sum of αiyixi. The data points xi
corresponding to nonzero αi are the support vectors.

The derivative of LD with respect to a nonzero αi is 0 at an optimum. This gives

yi(<w,xi> + b) – 1 = 0.

In particular, this gives the value of b at the solution, by taking any i with
nonzero αi.

The dual is a standard quadratic programming problem. For example, the
Optimization Toolbox quadprog solver solves this type of problem.

1-38

Support Vector Machines (SVM)

Nonseparable Data
Your data might not allow for a separating hyperplane. In that case, SVM
can use a soft margin, meaning a hyperplane that separates many, but not all
data points.

There are two standard formulations of soft margins. Both involve adding
slack variables si and a penalty parameter C.

• The L1-norm problem is:

min ,
, ,w b s

i
i

w w C s
1
2

+⎛

⎝
⎜

⎞

⎠
⎟∑

such that

y w x b s

s
i i i

i

,

.

+() ≥ −

≥

1

0

The L1-norm refers to using si as slack variables instead of their squares.
The SMO svmtrain method minimizes the L1-norm problem.

• The L2-norm problem is:

min ,
, ,w b s

i
i

w w C s
1
2

2+⎛

⎝
⎜

⎞

⎠
⎟∑

subject to the same constraints. The QP svmtrain method minimizes the
L2-norm problem.

In these formulations, you can see that increasing C places more weight on
the slack variables si, meaning the optimization attempts to make a stricter
separation between classes. Equivalently, reducing C towards 0 makes
misclassification less important.

Mathematical Formulation: Dual. For easier calculations, consider the L1
dual problem to this soft-margin formulation. Using Lagrange multipliers μi,
the function to minimize for the L1-norm problem is:

1-39

1 Getting Started

L w w C s y w x b s sP i
i

i i i i
i

i i
i

= + − +() − −()() −∑ ∑ ∑1
2

1, , ,

where you look for a stationary point of LP over w, b, and positive si. Setting
the gradient of LP to 0, you get

b y x

y

C

s

i i i
i

i i
i

i i

i i i

=

=

= −
≥

∑

∑

0

0, , .

These equations lead directly to the dual formulation:

max ,

 i
i

i j i j i j
ji

y y x x∑ ∑∑− 1
2

subject to the constraints

y

C

i i
i

i

∑ =

≤ ≤

0

0 .

The final set of inequalities, 0 ≤ αi ≤ C, shows why C is sometimes called a
box constraint. C keeps the allowable values of the Lagrange multipliers αi
in a “box”, a bounded region.

The gradient equation for b gives the solution b in terms of the set of nonzero
αi, which correspond to the support vectors.

You can write and solve the dual of the L2-norm problem in an analogous
manner. For details, see Christianini and Shawe-Taylor [2], Chapter 6.

1-40

Support Vector Machines (SVM)

svmtrain Implementation. Both dual soft-margin problems are quadratic
programming problems. Internally, svmtrain has several different algorithms
for solving the problems. The default Sequential Minimal Optimization
(SMO) algorithm minimizes the one-norm problem. SMO is a relatively fast
algorithm. If you have an Optimization Toolbox license, you can choose to
use quadprog as the algorithm. quadprog minimizes the L2-norm problem.
quadprog uses a good deal of memory, but solves quadratic programs to a high
degree of precision (see Bottou and Lin [1]). For details, see the svmtrain
function reference page.

Nonlinear Transformation with Kernels
Some binary classification problems do not have a simple hyperplane as
a useful separating criterion. For those problems, there is a variant of the
mathematical approach that retains nearly all the simplicity of an SVM
separating hyperplane.

This approach uses these results from the theory of reproducing kernels:

• There is a class of functions K(x,y) with the following property. There is a
linear space S and a function φ mapping x to S such that

K(x,y) = <φ(x),φ(y)>.

The dot product takes place in the space S.

• This class of functions includes:

- Polynomials: For some positive integer d,

K(x,y) = (1 + <x,y>)d.

- Radial basis function: For some positive number σ,

K(x,y) = exp(–<(x–y),(x – y)>/(2σ2)).

- Multilayer perceptron (neural network): For a positive number p1 and a
negative number p2,

K(x,y) = tanh(p1<x,y> + p2).

1-41

1 Getting Started

Note Not every set of p1 and p2 gives a valid reproducing kernel.

The mathematical approach using kernels relies on the computational
method of hyperplanes. All the calculations for hyperplane classification
use nothing more than dot products. Therefore, nonlinear kernels can use
identical calculations and solution algorithms, and obtain classifiers that are
nonlinear. The resulting classifiers are hypersurfaces in some space S, but
the space S does not have to be identified or examined.

Using Support Vector Machines
As with any supervised learning model, you first train a support vector
machine, then use the trained machine to classify (predict) new data. In
addition, to obtain satisfactory predictive accuracy, you can use various SVM
kernel functions, and you must tune the parameters of the kernel functions.

• “Training an SVM Classifier” on page 1-42

• “Classifying New Data with an SVM Classifier” on page 1-43

• “Tuning an SVM Classifier” on page 1-43

Training an SVM Classifier
Train an SVM classifier with the svmtrain function. The most common
syntax is:

SVMstruct = svmtrain(data,groups,'Kernel_Function','rbf');

The inputs are:

• data — Matrix of data points, where each row is one observation, and
each column is one feature.

• groups— Column vector with each row corresponding to the value of the
corresponding row in data. groups should have only two types of entries.
So groups can have logical entries, or can be a double vector or cell array
with two values.

1-42

Support Vector Machines (SVM)

• Kernel_Function— The default value of 'linear' separates the data by a
hyperplane. The value 'rbf' uses a Gaussian radial basis function. Hsu,
Chang, and Lin [4] suggest using 'rbf' as your first try.

The resulting structure, SVMstruct, contains the optimized parameters from
the SVM algorithm, enabling you to classify new data.

For more name-value pairs you can use to control the training, see the
svmtrain reference page.

Classifying New Data with an SVM Classifier
Classify new data with the svmclassify function. The syntax for classifying
new data with a SVMstruct structure is:

newClasses = svmclassify(SVMstruct,newData)

The resulting vector, newClasses, represents the classification of each row
in newData.

Tuning an SVM Classifier
Hsu, Chang, and Lin [4] recommend tuning parameters of your classifier
according to this scheme:

• Start with Kernel_Function set to 'rbf' and default parameters.

• Try different parameters for training, and check via cross validation to
obtain the best parameters.

The most important parameters to try changing are:

• boxconstraint— One strategy is to try a geometric sequence of the box
constraint parameter. For example, take 11 values, from 1e-5 to 1e5 by a
factor of 10.

• rbf_sigma— One strategy is to try a geometric sequence of the RBF sigma
parameter. For example, take 11 values, from 1e-5 to 1e5 by a factor of 10.

For the various parameter settings, try cross validating the resulting
classifier. Use crossval with 5-way or the default 10-way cross validation.

1-43

1 Getting Started

After obtaining a reasonable initial parameter, you might want to refine your
parameters to obtain better accuracy. Start with your initial parameters
and perform another cross validation step, this time using a factor of 1.2.
Alternatively, optimize your parameters with fminsearch, as shown in “SVM
Classification with Cross Validation” on page 1-48.

Nonlinear Classifier with Gaussian Kernel
This example generates one class of points inside the unit disk in two
dimensions, and another class of points in the annulus from radius 1 to radius
2. It then generates a classifier based on the data with the Gaussian radial
basis function kernel. The default linear classifier is obviously unsuitable for
this problem, since the model is circularly symmetric. Set the box constraint
parameter to Inf to make a strict classification, meaning no misclassified
training points.

Note Other kernel functions might not work with this strict box constraint,
since they might be unable to provide a strict classification. Even though the
rbf classifier can separate the classes, the result can be overtrained.

1 Generate 100 points uniformly distributed in the unit disk. To do so, generate
a radius r as the square root of a uniform random variable, generate an angle
t uniformly in (0,2π), and put the point at (rcos(t),rsin(t).

r = sqrt(rand(100,1)); % radius
t = 2*pi*rand(100,1); % angle
data1 = [r.*cos(t), r.*sin(t)]; % points

2 Generate 100 points uniformly distributed in the annulus. The radius is
again proportional to a square root, this time a square root of the uniform
distribution from 1 through 4.

r2 = sqrt(3*rand(100,1)+1); % radius
t2 = 2*pi*rand(100,1); % angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points

3 Plot the points, and plot circles of radii 1 and 2 for comparison:

plot(data1(:,1),data1(:,2),'r.')

1-44

Support Vector Machines (SVM)

hold on
plot(data2(:,1),data2(:,2),'b.')
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off

4 Put the data in one matrix, and make a vector of classifications:

data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;

5 Train an SVM classifier with:

1-45

1 Getting Started

• Kernel_Function set to 'rbf'

• boxconstraint set to Inf

cl = svmtrain(data3,theclass,'Kernel_Function','rbf',...
'boxconstraint',Inf,'showplot',true);

hold on
axis equal
ezpolar(@(x)1)
hold off

svmtrain generates a classifier that is close to a circle of radius 1. The
difference is due to the random training data.

1-46

Support Vector Machines (SVM)

6 Training with the default parameters makes a more nearly circular
classification boundary, but one that misclassifies some training data.

cl = svmtrain(data3,theclass,'Kernel_Function','rbf',...
'showplot',true);

hold on
axis equal
ezpolar(@(x)1)
hold off

1-47

1 Getting Started

SVM Classification with Cross Validation
This example classifies points from a Gaussian mixture model. The model is
described in Hastie, Tibshirani, and Friedman [3], page 17. It begins with
generating 10 base points for a “green” class, distributed as 2-D independent
normals with mean (1,0) and unit variance. It also generates 10 base points
for a “red” class, distributed as 2-D independent normals with mean (0,1) and
unit variance. For each class (green and red), generate 100 random points as
follows:

1 Choose a base point m of the appropriate color uniformly at random.

2 Generate an independent random point with 2-D normal distribution with
mean m and variance I/5, where I is the 2-by-2 identity matrix.

After generating 100 green and 100 red points, classify them using svmtrain,
and tune the classification using cross validation.

To generate the points and classifier:

1 Generate the 10 base points for each class:

grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);

2 View the base points:

plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off

Since many red base points are close to green base points, it is difficult to
classify the data points.

1-48

Support Vector Machines (SVM)

3 Generate the 100 data points of each class:

redpts = zeros(100,2);grnpts = redpts;
for i = 1:100

grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.2);
redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.2);

end

4 View the data points:

figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on

1-49

1 Getting Started

plot(redpts(:,1),redpts(:,2),'ro')
hold off

5 Put the data into one matrix, and make a vector grp that labels the class
of each point:

cdata = [grnpts;redpts];
grp = ones(200,1);
% green label 1, red label -1
grp(101:200) = -1;

6 Check the basic classification of all the data using the default parameters:

svmStruct = svmtrain(cdata,grp,'Kernel_Function','rbf',...

1-50

Support Vector Machines (SVM)

'showplot',true);

7 Write a function called crossfun to calculate the predicted classification
yfit from a test vector xtest, when the SVM is trained on a sample xtrain
that has classification ytrain. Since you want to find the best parameters
rbf_sigma and boxconstraint, include those in the function.

function yfit = ...
crossfun(xtrain,ytrain,xtest,rbf_sigma,boxconstraint)

% Train the model on xtrain, ytrain,
% and get predictions of class of xtest
svmStruct = svmtrain(xtrain,ytrain,'Kernel_Function','rbf',...

1-51

1 Getting Started

'rbf_sigma',rbf_sigma,'boxconstraint',boxconstraint);
yfit = svmclassify(svmStruct,xtest);

8 Set up a partition for cross validation. This step causes the cross validation to
be fixed. Without this step, the cross validation is random, so a minimization
procedure can find a spurious local minimum.

c = cvpartition(200,'kfold',10);

9 Set up a function that takes an input z=[rbf_sigma,boxconstraint], and
returns the cross-validation value of exp(z). The reason to take exp(z) is
twofold:

• rbf_sigma and boxconstraint must be positive.

• You should look at points spaced approximately exponentially apart.

This function handle computes the cross validation at parameters
exp([rbf_sigma,boxconstraint]):

minfn = @(z)crossval('mcr',cdata,grp,'Predfun', ...
@(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,...
xtest,exp(z(1)),exp(z(2))),'partition',c);

10 Search for the best parameters [rbf_sigma,boxconstraint] with
fminsearch, setting looser tolerances than the defaults.

Tip If you have a Global Optimization Toolbox license, use patternsearch
for faster, more reliable minimization. Give bounds on the components of
z to keep the optimization in a sensible region, such as [–5,5], and give a
relatively loose TolMesh tolerance.

opts = optimset('TolX',5e-4,'TolFun',5e-4);
[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

searchmin =
0.9758

-0.1569

1-52

Support Vector Machines (SVM)

fval =
0.3350

The best parameters [rbf_sigma;boxconstraint] in this run are:

z = exp(searchmin)
z =

2.6534
0.8548

11 Since the result of fminsearch can be a local minimum, not a global
minimum, try again with a different starting point to check that your result is
meaningful:

[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

searchmin =
0.2778
0.6395

fval =
0.3100

The best parameters [rbf_sigma;boxconstraint] in this run are:

z = exp(searchmin)
z =

1.3202
1.8956

12 Try another search:

[searchmin fval] = fminsearch(minfn,randn(2,1),opts)

searchmin =
-0.0749
0.6085

fval =
0.2850

The third search obtains the lowest function value. The final parameters are:

1-53

1 Getting Started

z = exp(searchmin)
z =

0.9278
1.8376

The default parameters [1,1] are close to optimal for this data and partition.

13 Use the z parameters to train a new SVM classifier:

svmStruct = svmtrain(cdata,grp,'Kernel_Function','rbf',...
'rbf_sigma',z(1),'boxconstraint',z(2),'showplot',true);

14 Generate and classify some new data points:

1-54

Support Vector Machines (SVM)

grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));

newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1);
grpData(11:20) = -1; % red = -1

v = svmclassify(svmStruct,newData,'showplot',true);

15 See which new data points are correctly classified. Circle the correctly
classified points in red, and the incorrectly classified points in black.

1-55

1 Getting Started

mydiff = (v == grpData); % classified correctly
hold on
for ii = mydiff % plot red circles around correct pts

plot(newData(ii,1),newData(ii,2),'ro','MarkerSize',12)
end

for ii = not(mydiff) % plot black circles around incorrect pts
plot(newData(ii,1),newData(ii,2),'ko','MarkerSize',12)

end
hold off

1-56

Support Vector Machines (SVM)

References

[1] Bottou, L., and Chih-Jen Lin. Support Vector Machine Solvers. Available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209
&rep=rep1&type=pdf.

[2] Christianini, N., and J. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge University
Press, Cambridge, UK, 2000.

[3] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, second edition. Springer, New York, 2008.

[4] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. A
Practical Guide to Support Vector Classification. Available at
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

1-57

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209&rep=rep1&type=pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

