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Minimum Squared-Error Procedures: Pseudo-inverse (DHS 5.8)
- Again a 2-class problem
- Assume reflected prototypes
- Minimum mean square error (MSE) technique (=> Least Mean Squares, LMS).

- Consider all samples

With all protopypes
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Previously find the solution of a set of linear inequalities
YW=>( then correct classification or YW>b -1 where b is a safety marginand 1 isa
vector of 1.

Now find the solution to a set of linear equalities,
YW=b where b is a target vector now.
That is to find W given a suitable b

New criterion function

J(W) = [YW —b|?
If Y is nonsingular, W =Y 1p
But it is generally singular, that is Y is rectangular (more rows than columns).

YW=b is overdetermined (more equations than unknowns).
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Pseudo-inverse (continues)

To minimize J,
Vo w) =2YT(Yw—b) =0

Y'Yw =YTh
w=YTY)"YTh
w=Y*"h
Yt = (YTY)"1YT is called pseudoinverse

If Y is square and nonsingular, then pseudoinverse becomes regular inverse

Therefore MSE solution
w=Yth

b = arbitrary, will get a solution whether data is separable or not, but no guarantee it is a

good solution for separating prototypes.

If b is carefully chosen, we may be able to get a good discriminant function for both

separable and non-separable cases.

MSE solution depends on the target vector b

Different choices for b give the solution different properties
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Example 1: Constructing a linear classifier by matrix pseudoinverse

Suppose we have the following two-dimensional points for two categories: wy:
(1,2)" and (2,0)%, and wy: (3,1)* and (2, 3)*, as shown in black and red, respectively,
in the figure.

Our matrix Y is therefore

1 1 2
1 2 0
Y=1 ;1 3 1
—] -3 -3

and after a few simple calculations we find that its pseudoinverse is

5/4 13/12 3/4 7/12
Y = lim(Y'Y +eD) 'Y = | -1/2 -1/6 -1/2 -1/6
v 0o -1/3 0 -1/3

4
3
R,
1
0
X
0 1 - | 3 4
1
Four training points and the decision boundary a* | = 0, where a was found

T2

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1,1,1,1)t. Our solution is
a=Y' = (11/3,-4/3,-2/3)", and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.
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Windrow-Hoff (DHS 5.8.4)

Use this cost function, J(w)=||Yw-b|?

b=target vector

Advantages over pseudoinverse:
- Pseudoinverse can be very large
- It could be singular

- It can have truncation problems, errors.

— One-at-a-time update

— Feedback scheme to reduce truncation errors.

VJ =2Y"(Yw-b)
Rule 1=> w(k+1)=w(k)+ouk)Y ' (Yw(k)-b) for all samples
or
Rule 2=> w(k+1)=w(k)+ouk)[b(k)-w'(k)yx] yx  considering the samples
sequencially
w(0)=arbitrary

The size of Y'Y is smaller than Y*, storage requirements are less.
Update for all prototypes (misclassified & correctly-classified)
Usually updates never cease

o(k)=a(0)/k for convergence.

Requires a good b.

Figure 5.17: The LMS algorithm need not converge to a separating hyperplane, even
if one exists. Since the LMS solution minimizes the sum of the squares of the distances
of the training points to the hyperplane, for this exmple the plane is rotated clockwise
compared to a separating hyperplane.
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Ho-Kashvap Procedure (DHS 5.9.1)

Read Introduction in DHS 5.9.1. Check out the differences between the Perceptron and

the MSE procedures in the case of linearly separable vs. nonseparable problems.

Task: Find w and b simultaneously

Jwb)=| Yw-b|?

Minimize J w.r.t. w and b with constraint b>0
V] =2Y"(Yw-Db)

Vel =-2(Yw-b)

w=Y'b=>V,J=0

Minimize J w.r.t. b, with w=Y'b, subject to constraint b>0

Start with b>0
Only add positive elements when updating b

Gradient descent:
b(k+1)=b(k)-12a[Vb ] - Vb J|]] >0

1/2[a-|a|]] = 0 if a>0

aifa<0 to make it sure a positive update
lv| means component-wise |.| => |v|=[ ..., [vi|, ...]"
Resulting Algorithm

b(0)>0 but otherwise arbitrary
w(k)=Y'b(k)

Let e(k)=Yw(k) — b(k)
b(k+1)=b(k) + afe(k)He(k)]

>0

This is Ho-Kashyap Pseudoinverse.
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Notes on Ho-Kashvyap

1. Converges if samples are linearly separable (proved in DHS 5.9.2)

2. Generally required fewer steps to converge than Perceptron. However, each step
requires more operations than Perceptron.

3. Update entire b and w, for both classes in each iteration

4. Nonseparability of data is indicated in the course of iterating. If e(k)<=0, not

linearly separable.

Appropriate o

Option 1
0<a<2

= converges fastest

w(0)=(Y"Y)"'Y"b(0)
and b(0)=1

= solution w(k) is the best linear square fit for a given b(k)

Option 2
O<a<|[Y"Y]"

||l.]| can be any of the following
A= |

IAl=max %4 |a]

1
1 .
|Al=tr(AA")z = [Sylay|

This gives the simplest implementation but converges slower.
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Ho-Kashvap Convergence (DHS 5.9.2)

If samples are linearly separable and if 0<a<lI

=>» converges to solution in finite no of steps

=>» could add a halting condition for when prototypes are correctly classified

can show either
e(k)=0 within finite no of steps -> algorithm terminates with a solution vector

or e(k)-> 0 as k-> oo => Yw(k)>0 after finite no of steps

Same convergence properties for linearly separable prototypes

Different options on parameter o

Behavior of Ho-Kashvyap Algorithm for Nonseparable Prototypes (DHS 5.9.3)

- If obtain an e(k) or converge to an e(k) such that e(k)#0 and no components of
e(k) are positive, then the prototypes are not linearly separable.

- If the prototypes are not linearly separable, then either the algorithm will yield
an e(k) such that e(k)#0 with no positive components, or will asymptotically

approach it: e(k)->e(0)#0 with no components of e(0) being >0

We have covered so far (see Table 5.1)
1. Fixed Increment in Perceptron

. Variable Increment in Perceptron

Pseudo-Inverse
. Windrow-Hoff
6. Ho-Kashyap

* Stochastic Approximation and Linear Programming (i.e., Simplex Algorithm) are not

2
3. Relaxation in Perceptron
4
5

covered here.
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Various Descent Algorithms

Table 5.1: Descent Procedures for Obtaining Linear Discriminant Functions

alk+1)
a(k) + n(k)(zx — at(k)y*)y*

Name Criterion Algorithm Conditions
(L (L ke
Fixed L= % (-aty) Rl e
Increment A ) (-ay) i
aty<0 (a'(k)y* < 0)
" k) = 0
Variable P }_‘ _1a‘y - bl ﬂ[k +1) a(k,- + Il‘k.ly an‘k) — 00
R— " afyo (a*(k)y* < b) 3 ni(k)
e 5 ()
(3 nix))
‘1 \ L b—a'(k)yE k
g a(k+1)=a(k) 4 I]—g—lL‘y -y
Relaxation Jo=3% lYW"’-‘— D<cpn<?2
- (a*(k)y* < b)
‘Widrow-Hoff e 2 alk+1) k) >0
(LMS) s E,:\a ¥i —bi) a(k) + n(k) (b — at(k)y*)y* n(k) — 0
Y n(k) — oo

E 1]2[‘:] — L <00

Stochastic Jm =& [(a'y —2)?]
Approx.
ak+1) 1L 1} ¢
a(k) + R(k)(z(k) — a(k)ty*)y* B =R
e,
Pailo- J, = [Ya — bj? a=Y'b
inverse
b(k + 1) = b(k) + n(e(k) + |e(k)|)
D<p<l
e(k) = Ya(k) — b(k)
b[l:l =0
Ho-Kashyap J, = ||Ya - bjj2 a(k) = Yib(k)
nik)
a(k)|"YRY" |a(k)|
b(k + 1) = b(k) + n(e(k) + (|e(k)|) [o(k) YRY YRY '[o(k)
is optimum;
a(k + 1) = a(k) 4+ nRY*|e(k)
R sym., pos. def.;
b(1) =0
aty; + 7> b;
7 =max|—(a%y; — b;)] Simplex algorithm
aty,<b, b>0
Linear
Program- -
ming =Y ¢ o
P 2. ) i aty; + 7> b;
-1 Simplex algorith .
5 oty — by) implex algorithm b>0
aly,<b
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Support Vector Machines (or Maximum Margin Classifier) (DHS 5.11)

Concepts

Figure 5

Recall linear machines with margins.

SVMs are very much similar, but rely on preprocessing the data to represent
patterns in a high dimension (much higher than original feature space)

Typically a nonlinear mapping function (or a kernel function) ¢(.) is used.
Thus transform a pattern x, to y, =¢(x,).

T
A linear discriminant can be expressed as W) =Wy iy an augmented

space.

The goal of a SVM is to find a separating hyperplane with the largest margin.
The support vectors are the training samples that define optimal separating
hyperplane.

The support vectors are the most difficult patterns to classify.

See Fig. 5.19

19: Training a Support Vector Machine consists of finding the optimal hy-

perplane, i.e., the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane.

I'he th

ree support vectors are shown in solid dots.
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Methods

- Modify the familiar Perceptron algorithm: train with the current worst-classified

patterns. Of course finding the worst-classified patterns is difficult

(computationally expensive)

- Training an SVM
B Use the method of Lagrange Multipliers (not the focus of this class)

B The cost function

Example

L(w,cz)=%||w||2 —Zn:ak[zkwTyk —1] with z, =+1
k=1

Minimize L w.rt. the weight vector w, and maximize it w.rt. the
multipliers «, >0

This problem can be reformulated through the Kuhn-Tucker condition as

e u 1 . .
Maximizing L(a)=) a, ——Y a,a,;z,z,y;y, With the constraints
k=1 )

n
Yz, =0, a, 20, k=1,.,n
k=1

- Example 2 (DHS p. 264)
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The XOR problem in the original z; — 225 feature space is shown at the left; the two
red patterns are in category w; and the two black ones in w,;. These four training
patterns x are mapped to a six-dimensional space by 1, 2z, V22, V22,25, 27 and
x3. In this space, the optimal hyperplane is found to be g(z1,z2) = z122 = 0 and the
margin is b = /2. A two-dimensional projection of this space is shown at the right.
The hyperplanes through the support vectors are /2z,2, = +1, and correspond to
the hyperbolas z125 = £1 in the original feature space, as shown.

- Try “svmtrain” under Bioinformatics Toolbox of Matlab
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