
KHU-BME

Pattern Classification

Lecture 04-2

 1

Now, we want an automatic procedure to find a w in the solution
region.

Training Algorithms (Learning) – Preliminaries
General Procedure –

1. Construct a criterion function J(w) (appropriately chosen)
2. Minimize J(w) with respect to w
3. Result will be a solution weight vector w

[Method I]

Use the Gradient Descent on J(w) (Recursive Algorithm, DHS 5.4.2)
Let w(i) = solution weight vector at iteration i, then

)]([)()()1(iwJiiwiw wÑ-=+ a This is the basic Gradient Descent

)]([iwJwÑ- points in the direction of steepest descent of J.

N
N

w u
w
Ju

w
Ju

w
JwJ ˆ....ˆˆ)(2

2
1

1 ¶
¶

++
¶
¶

+
¶
¶

=Ñ (N-D space)

Must choose an appropriate criterion function J(w). How? Coming in the next section.

What about choosing the learning rate parameter,)(ia ?
- There are various choices, specific to choices of J(w) (more to follow). These are
mostly suboptimal in terms of minimizes J after each step.
- There is an optimal choice (as defined above) under certain assumptions.
- Again coming in the next, next section

Finally,
Combine with: w(k+1)=w(k)-a(k)ÑJ[w(k)], find a new w via iterations.

Minimizing J[w(k+1)] can be done by setting

)()(
)(

2

JHJ
J

i T ÑÑ

Ñ
=a

- One choice
- Can minimize # iterations to min. of J.
- Doesn’t necessarily minimize amount of computation to min. of J.

KHU-BME

Pattern Classification

Lecture 04-2

 2

 [Method II]
The quadratic approximation of J(w) leads to the Newton’s Method.

Use the Newton’s Algorithm (review the handout)
Suppose we want to solve: min ()	, w 	∈ 	 (drop a vector notation)
At w = w at a certain point, J(w) can be approximated by: J(w) ≈ h(w) = 	J(w)+∇()( − ) +  ( − )()( − )
which is the quadratic Taylor expansion of J(w) at w = w . ∇J(w) is the gradient of J(w) and H(w) is the Hessian of J(w).

Note that h(w) is a quadratic function, which is minimized by solving ∇h(w) = 0.
Since the gradient of h(w) is ∇h(w) = ∇J() + ()( − )
Therefore ∇J() + ()( − ) = 0
which yields w− = −()∇()
The direction −()∇() is called the Newton direction or the Newton step.

Now w =  − ()∇()

Then, w(k + 1) = w(k) − ∇ (Newton’s Algorithm)

KHU-BME

Pattern Classification

Lecture 04-2

 3

KHU-BME

Pattern Classification

Lecture 04-2

 4

Perceptron Algorithm (DHS 5.5)

General Idea –

If)1(

m
y gives 0)1(<

m

T yw then increase w

Perceptron Criterion Function

)~()(ywwJ T

Yy
å
Î

-= (General Form)

where Y is the set of misclassified prototypes.
J(w)³0 always

(0~ <ywT for misclassified)

KHU-BME

Pattern Classification

Lecture 04-2

 5

Other criterion functions

KHU-BME

Pattern Classification

Lecture 04-2

 6

[Perceptron Algorithm I] (One-at-a-time, Unreflected Prototypes)

If $ prototype from S1, 0)1(£
m

T yw , then increase w,

If $ prototype from S2, 0)2(³
m

T yw , then decrease w;

Repeat for all M1+M2 prototypes;
Continue cycling through all prototypes until w is no longer updated.
For the i-th iteration:

 If 0)()1(£
m

T yiw , then)1()()()1(
m
yiiwiw a+=+

 If 0)()2(>
m

T yiw , then)2()()()1(
m
yiiwiw a-=+

 Otherwise w(i+1)=w(i)
 (Next prototype)
 0)(>ia
1 pass through all prototypes = 1 epoch

What if a is very large?

KHU-BME

Pattern Classification

Lecture 04-2

 7

[Perceptron Algorithm II] (One-at-a-time, Reflected Prototypes)

Use the reflected prototypes w(i + 1) = w(i) + α(i) if the prototype  is misclassified.
 w(i + 1) = w(i) if the prototype  is correctly classified.

[Perceptron Algorithm III] (Many-at-a-time)
J(w) is proportional to the sum of distances from misclassified y’s to decision boundary

å
Î

-=Ñ
Yy

ywJ ~()()

So å
Î

+=+
Yy
yiiwiw ~)()()1(a

KHU-BME

Pattern Classification

Lecture 04-2

 8

KHU-BME

Pattern Classification

Lecture 04-2

 9

Choice of a:

1. Fixed increment rule
a(i)=constant (independent of i)
a(i)>0

2. Absolute correction rule
Choose a at each iteration to be just large enough to guarantee correct
classification after weigh adjustment.

i.e., If 0)1()1(>+
m

T yiw

then 0])([)1()1()1()1(>+=+
m

T
mm

T yyiwyiw a

Satisfied if]
)(

[
)1()1(

)1(

m

T

m

m

T

yy

yiw
=a

[*]=smallest integer larger than *
Guaranteed convergence.

3. Fractional correction rule
Choose)(ia to move a fraction, l , normal to the hyperplane

)1()1()1()()1()(
m

T

m

T

m

T yiwyiwyiw l=+-

)1()1()1()1()(])([)(
m

T

m
T

mm

T yiwyyiwyiw la =+-

)1()1()1()(
m

T

m

T

m
yiwyy la =

)1()1(

)1()(
)(

m

T

m

m

T

yy

yiw
i

l
a =

 In this case w(0)¹0

Move:)1(

)1()1(

)1(
)1(

)(
)(

m

m

T

m

m

T

m
y

yy

yiw
yi

l
a =

KHU-BME

Pattern Classification

Lecture 04-2

 10

Notes:

1. Fixed increment iterated many times with a=1 for the same)1(

m
y gives the

same result as for absolute correction rule.
2. Fixed increment with a>0 is guaranteed to converge if prototypes are linearly

separable.
3. Absolute correction is guaranteed to converge (if prototypes are linearly

separable)
4. Fraction correction rule, for 0<l<1, will not converge
5. Fractional correction rule, for l=2, the solution will reflect about the hyperplane

an equal distance on either side.
6. One can apply algorithms sequentially (one-at-a-time) or simultaneously to all

prototypes (many-at-a-time)

å
Î

+=+
Yy
yiiwiw)()()1(a (Many at a time, or batch)

m
yiiwiw)()()1(a+=+ (One ym at a time)

Problems:

1. If prototypes are not linearly separable, perceptron will not converge
2. Perceptron terminated early may give poor classification results.

[Extra]
About Frank Rosenblatt who simulated Perceptron on an IBM computer in 1957.

