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Now, we want an automatic procedure to find a w in the solution 
region. 
 
Training Algorithms (Learning) – Preliminaries 
General Procedure – 

1. Construct a criterion function J(w) (appropriately chosen) 
2. Minimize J(w) with respect to w 
3. Result will be a solution weight vector w 

 
[Method I] 

Use the Gradient Descent on J(w) (Recursive Algorithm, DHS 5.4.2) 
Let w(i) = solution weight vector at iteration i, then 

 )]([)()()1( iwJiiwiw wÑ-=+ a       This is the basic Gradient Descent  
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Must choose an appropriate criterion function J(w). How? Coming in the next section. 
 
What about choosing the learning rate parameter, )(ia ? 
- There are various choices, specific to choices of J(w) (more to follow). These are 
mostly suboptimal in terms of minimizes J after each step. 
- There is an optimal choice (as defined above) under certain assumptions. 
- Again coming in the next, next section 
 
Finally,  
Combine with: w(k+1)=w(k)-a(k)ÑJ[w(k)], find a new w via iterations. 
 
Minimizing J[w(k+1)] can be done by setting 
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- One choice 
- Can minimize # iterations to min. of J. 
- Doesn’t necessarily minimize amount of computation to min. of J. 
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 [Method II] 
The quadratic approximation of J(w) leads to the Newton’s Method. 
 
Use the Newton’s Algorithm (review the handout) 
Suppose we want to solve: min ()	, w 	∈ 	 (drop a vector notation) 
At w = w  at a certain point, J(w) can be approximated by: J(w) ≈ h(w) = 	J(w )+∇()( − ) +  ( − )()( − ) 
which is the quadratic Taylor expansion of J(w) at w = w . ∇J(w) is the gradient of J(w) and H(w) is the Hessian of J(w). 
 
Note that h(w) is a quadratic function, which is minimized by solving ∇h(w) = 0.  
Since the gradient of h(w) is ∇h(w) = ∇J() + ()( − ) 
Therefore  ∇J() + ()( − ) = 0 
which yields w− = −()∇() 
The direction −()∇() is called the Newton direction or the Newton step. 
 
Now  w =  − ()∇() 
 
Then, w(k + 1) = w(k) − ∇    (Newton’s Algorithm) 
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Perceptron Algorithm (DHS 5.5) 
 
General Idea – 
 

If )1(

m
y  gives 0)1( <

m

T yw  then increase w 

 
Perceptron Criterion Function 
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where Y is the set of misclassified prototypes. 
J(w)³0 always 

( 0~ <ywT  for misclassified) 
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Other criterion functions  
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[Perceptron Algorithm I] (One-at-a-time, Unreflected Prototypes) 

If $  prototype from S1, 0)1( £
m

T yw , then increase w, 

If $  prototype from S2, 0)2( ³
m

T yw , then decrease w; 

Repeat for all M1+M2 prototypes; 
Continue cycling through all prototypes until w is no longer updated. 
For the i-th iteration: 

 If 0)( )1( £
m

T yiw , then )1()()()1(
m
yiiwiw a+=+  

 If 0)( )2( >
m

T yiw , then )2()()()1(
m
yiiwiw a-=+  

 Otherwise w(i+1)=w(i) 
 (Next prototype) 
 0)( >ia  
1 pass through all prototypes = 1 epoch 
 
 
 
 
 
 
 
 
 
 
 
What if a  is very large? 
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[Perceptron Algorithm II] (One-at-a-time, Reflected Prototypes) 
 
Use the reflected prototypes w(i + 1) = w(i) + α(i) if the prototype  is misclassified. 
 w(i + 1) = w(i) if the prototype  is correctly classified. 
 

 

 
[Perceptron Algorithm III] (Many-at-a-time) 
J(w) is proportional to the sum of distances from misclassified y’s to decision boundary 
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Choice of a: 
 

1. Fixed increment rule 
a(i)=constant (independent of i) 
a(i)>0 
 

2. Absolute correction rule 
Choose a at each iteration to be just large enough to guarantee correct 
classification after weigh adjustment. 
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[*]=smallest integer larger than * 
Guaranteed convergence. 
 

3. Fractional correction rule 
Choose )(ia  to move a fraction, l , normal to the hyperplane  
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 In this case w(0)¹0 
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Notes: 

1. Fixed increment iterated many times with a=1 for the same )1(

m
y  gives the 

same result as for absolute correction rule. 
2. Fixed increment with a>0 is guaranteed to converge if prototypes are linearly 

separable. 
3. Absolute correction is guaranteed to converge (if prototypes are linearly 

separable) 
4. Fraction correction rule, for 0<l<1, will not converge 
5. Fractional correction rule, for l=2, the solution will reflect about the hyperplane 

an equal distance on either side. 
6. One can apply algorithms sequentially (one-at-a-time) or simultaneously to all 

prototypes (many-at-a-time) 

å
Î

+=+
Yy
yiiwiw )()()1( a  (Many at a time, or batch) 

m
yiiwiw )()()1( a+=+  (One ym at a time) 

 
Problems: 

1. If prototypes are not linearly separable, perceptron will not converge 
2. Perceptron terminated early may give poor classification results. 

 
 
[Extra] 
About Frank Rosenblatt who simulated Perceptron on an IBM computer in 1957. 

 


