KHU-BME
Pattern Classification
Lecture 04-2

Now, we want an automatic procedure to find a w in the solution
region.

Training Algorithms (Learning) — Preliminaries
General Procedure —

1. Construct a criterion function J(w) (appropriately chosen)
2. Minimize J(w) with respect to w

3. Result will be a solution weight vector w

[Method I]
Use the Gradient Descent on J(w) (Recursive Algorithm, DHS 5.4.2)
Let w(i) = solution weight vector at iteration i, then

wi+D)=w(i)—a(@)V,Jwi)] This is the basic Gradient Descent

-V J[w(i)] points in the direction of steepest descent of J.
VWJ(v_v):a—JL?1 +8—Jﬁ2 ot & Uy (N-D space)
ow, ow, ow,,

Must choose an appropriate criterion function J(w). How? Coming in the next section.

What about choosing the learning rate parameter, «(i)?

- There are various choices, specific to choices of J(w) (more to follow). These are
mostly suboptimal in terms of minimizes J after each step.

- There is an optimal choice (as defined above) under certain assumptions.

- Again coming in the next, next section

Finally,
Combine with: w(k+1)=w(k)-a(k)VI[w(k)], find a new w via iterations.

Minimizing J[w(k+1)] can be done by setting

iy I
(V' H(VJ)

- One choice
- Can minimize # iterations to min. of J.

- Doesn’t necessarily minimize amount of computation to min. of J.

KHU-BME
Pattern Classification
Lecture 04-2

[Method IIj
The quadratic approximation of J(w) leads to the Newton’s Method.

Use the Newton’s Algorithm (review the handout)
Suppose we want to solve:
min/(w) , w € R™ (drop a vector notation)

At w = W at a certain point, J(w) can be approximated by:
J(w) = h(w) = J@)+V] (@) (W — W) + 5 (w — W)TH (W) (w — W)

which is the quadratic Taylor expansion of J(w) at w = w. VJ(w) is the gradient of
J(w) and H(w) is the Hessian of J(w).

Note that h(w) is a quadratic function, which is minimized by solving Vh(w) = 0.
Since the gradient of h(w) is
Vh(w) = VJ(w) + HWw)(w — w)
Therefore
Viw)+HwW)(w—-w) =0
which yields
w—w=—-HW) VJ(w)
The direction —H(W)~1VJ(w) is called the Newton direction or the Newton step.

Now
w=w—HW) V(W)

Then, (w(k +1) = w(k) — H™1VJ (Newton’s Algorithm)

KHU-BME
Pattern Classification
Lecture 04-2

FIGURE 5.10. The sequence of weight vectors given by a simple gradient descent
method (red) and by Newton’s (second order) algorithm (black). Newton’s method typi-
cally leads to greater improvement per step, even when using optimal learning rates for
both methods. However the added computational burden of inverting the Hessian ma-
trix used in Newton’s method is not always justified, and simple gradient descent may
suffice. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.

KHU-BME
Pattern Classification
Lecture 04-2

Perceptron Algorithm (DHS 5.5)

General Idea —
it y" gives w' yf: <0 then increase w

Perceptron Criterion Function

Jw)=>(-w'¥) (General Form)

XEY
where Y is the set of misclassified prototypes.

J(w)=0 always

w' 7 <0 for misclassified)
Y

KHU-BME
Pattern Classification
Lecture 04-2

Other criterion functions

FIGURE 5.11. Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant and
hence unacceptable for gradient descent procedures. At the upper right is the Perceptron
criterion (Eq. 16), which is piecewise linear and acceptable for gradient descent. The
lower left is squared error (Eq. 32), which has nice analytic properties and is useful
even when the patterns are not linearly separable. The lower right is the square error
with margin (Eq. 33). A designer may adjust the margin b in order to force the solution
vector to lie toward the middle of the b = 0 solution region in hopes of improving
generalization of the resulting classifier. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Jp(a) =) (-a'y), (16)

yey

yey
Jr(a) = % (a‘y——zb)‘ (33)
2yl

KHU-BME
Pattern Classification
Lecture 04-2

[Perceptron Algorithm I] (One-at-a-time, Unreflected Prototypes)

If 3 prototype from Sy, w' X:) <0, then increase w,

If 3 prototype from S,, v_vT ®>0 , then decrease w;

—m

Repeat for all M;+M; prototypes;
Continue cycling through all prototypes until w is no longer updated.

For the i-th iteration:

If w'()y"V <0, then w(i+1)=w(i)+a(i)y"

(2)

If w' @)y >0, then w(i+1)=w(i)-a()y"
Otherwise w(i+1)=w(i)

(Next prototype)

a(i)>0

1 pass through all prototypes = 1 epoch

What if « is very large?

KHU-BME
Pattern Classification
Lecture 04-2

[Perceptron Algorithm II] (One-at-a-time, Reflected Prototypes)

Use the reflected prototypes
w(i+1) = w(i) + a(i)y if the prototype ¥ is misclassified.

w(i+ 1) = w(i) if the prototype ¥y is correctly classified.

J(a) _—

10

S

A <
0 solution Y3 / - a;
a, > region

44

o

FIGURE 5.12. The Perceptron criterion, Jp(@), is plotted as a function of the weights a,
and a, for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is Y, ys, 1. Y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y;)
takes the candidate vector farther from the solution region than after the first update
(cf. Theorem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

[Perceptron Algorithm III] (Many-at-a-time)

J(w) 1s proportional to the sum of distances from misclassified y’s to decision boundary

VIw) =Y (-F)

yeY

So [w(i+1) = w(i)+ (). ¥

yeY

KHU-BME
Pattern Classification
Lecture 04-2

FIGURE 5.13. Samples from two categories, w; (black) and w; (red) are shown in aug-
mented feature space, along with an augmented weight vector a. At each step in a
fixed-increment rule, one of the misclassified patterns, y", is shown by the large dot.
A correction Aa (proportional to the pattern vector y¥) is added to the weight vector—
toward an ; point or away from an w; point. This changes the decision boundary from
the dashed position (from the previous update) to the solid position. The sequence of
resulting a vectors is shown, where later values are shown darker. In this example, by
step 9 a solution vector has been found and the categories are successfully separated
by the decision boundary shown. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

KHU-BME
Pattern Classification
Lecture 04-2

Choice of a:

1. Fixed increment rule

a(i)=constant (independent of 1)
o(i)>0

2. Absolute correction rule

Choose a at each iteration to be just large enough to guarantee correct
classification after weigh adjustment.

ie,ﬁ‘yTa+1Dﬁ>>o

then w' i+ 1)y, =[w(d +ay, Ty, >0

m

L ")y

Satisfied if a =[————
o’
y oy

[*]=smallest integer larger than *

Guaranteed convergence.

3. Fractional correction rule

Choose «(i) to move a fraction, A, normal to the hyperplane
W' @y —w' Gy = A" @)y

w' @y~ +ayT v | = Aw @)y

ol o T o (D)
ay "y = A’ @y

A’ @y,

O
y

—m —m

a(i) =

In this case w(0)=0

o o)
Move: a(z)zm =

O
ol @ =m

Y

—m —m

KHU-BME
Pattern Classification
Lecture 04-2

Notes:
1. Fixed increment iterated many times with a=1 for the same ysl) gives the

same result as for absolute correction rule.

2. Fixed increment with >0 is guaranteed to converge if prototypes are linearly
separable.

3. Absolute correction is guaranteed to converge (if prototypes are linearly
separable)

4. Fraction correction rule, for 0<A<I, will not converge

5. Fractional correction rule, for A=2, the solution will reflect about the hyperplane
an equal distance on either side.

6. One can apply algorithms sequentially (one-at-a-time) or simultaneously to all
prototypes (many-at-a-time)
w(i+1) = w(i)+ a(i)z » (Many at a time, or batch)

yeY
w(i+1)=w()+ Ot(i)zm (One yy, at a time)
Problems:
1. If prototypes are not linearly separable, perceptron will not converge

2. Perceptron terminated early may give poor classification results.

[Extra]

About Frank Rosenblatt who simulated Perceptron on an IBM computer in 1957.

pry=~ Frank Rosenblatt
1928-1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
0 but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

10

