Multiclass Problems: K classes (K>2 classes)

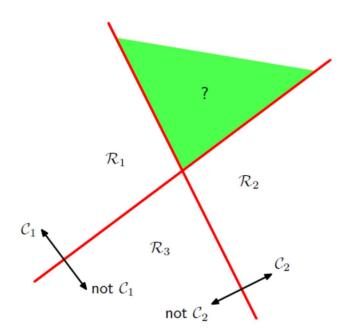
Let's try to build a K-class discriminant by combining a number of 2-class discriminant functions. But this faces some difficulties.

Method I: Try (K-1) Classifiers

 S_k vs $\overline{S_k}$ decisions

Solve a two-class problem by separating points into S_k or $Not S_k$ Regions.

This is also known as a **one-vs.-the rest classifier**.



(Fig. 4.2 C. B.) This method leads to regions of unclassified regions.

Method II: Try K(K-1)/2 Binary Discriminant Functions

 S_i vs S_j decisions for every possible pair of classes (one for every pair of classes).

This classifier is known as a one-vs.-one classifier.

Each point is classified according to a majority vote amongst the discriminant functions.

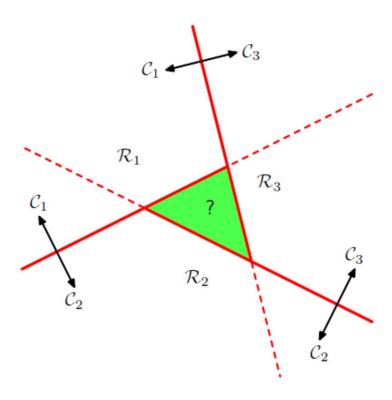


Fig. 4.1 (C.B.) This classifier also leaves some unclassified regions.

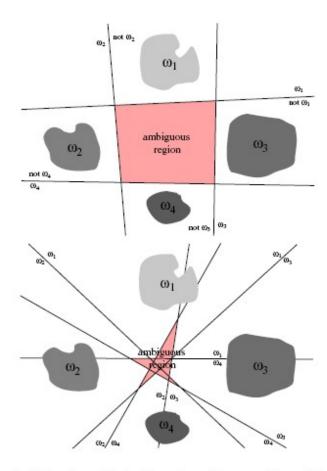


Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows $\omega_i/\text{not}\ \omega_i$ dichotomies while the bottom figure shows ω_i/ω_j dichotomies. The pink regions have ambiguous category assignments.

Method III: Try K Discriminant Functions, $g_k(\underline{x})$

Consider a single K-class discriminant function (i.e., K linear functions).

Decision rule:

$$\underline{x} \in S_k$$
 iff $g_k(\underline{x}) > g_j(\underline{x}), \forall j \neq k$

Decision hyperplanes:

$$g_k(\underline{x}) = g_j(\underline{x})$$

$$\underline{w}_k^T \underline{x}^{(a)} = \underline{w}_j^T \underline{x}^{(a)}$$

$$(\underline{w}_k^T - \underline{w}_j^T) \underline{x}^{(a)} = 0$$

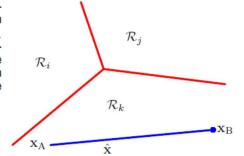
Definition

If
$$g_k(\underline{y}_m^{(k)}) > g_j(\underline{y}_m^{(k)}) \forall m = 1,2,...,M_k; j \neq k$$

Then the classes are linearly separable

This classifier is known as a linear machine.

Figure 4.3 Illustration of the decision regions for a multiclass linear discriminant, with the decision boundaries shown in red. If two points \mathbf{x}_A and \mathbf{x}_B both lie inside the same decision region \mathcal{R}_k , then any point $\widehat{\mathbf{x}}$ that lies on the line connecting these two points must also lie in \mathcal{R}_k , and hence the decision region must be singly connected and convex.



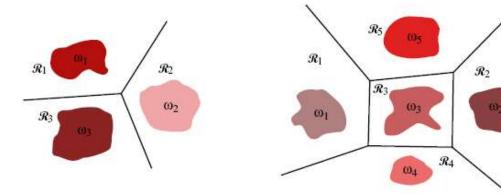


Figure 5.4: Decision boundaries produced by a linear machine for a three-class problem and a five-class problem.

Example: Minimum Distance to Class Means Classifier (Linear)

For S_k:
$$\langle \underline{y}_k \rangle = \frac{1}{M_k} \sum_{m=1}^{M_k} \underline{y}_m^{(k)}$$

Rule: Assign unknown \underline{x} to same class at closest $\leq \underline{y}_k >$ using Euclidean metric.

Distance d:

$$d^{2}[\underline{x}, <\underline{y}_{k}>] = \sum_{n=1}^{N} [x_{n} - < y_{nk}>]^{2}$$

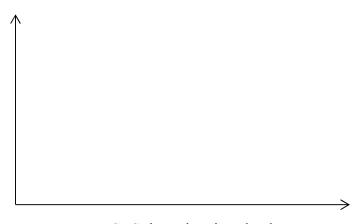
$$= [\underline{x} - <\underline{y}_{k}>]^{T} [\underline{x} - <\underline{y}_{k}>]$$

$$= \underline{x}^{T} \underline{x} - 2\underline{x}^{T} \langle \underline{y}_{k} \rangle + \langle \underline{y}_{k} \rangle^{T} \langle \underline{y}_{k} \rangle$$

$$Let \ g_{k}(\underline{x}) = -\frac{1}{2} d^{2} [\underline{x}, <\underline{y}_{k}>] + \frac{1}{2} \underline{x}^{T} \underline{x}$$

$$g_{k}(\underline{x}) = \underline{x}^{T} <\underline{y}_{k}> -\frac{1}{2} <\underline{y}_{k}>^{T} <\underline{y}_{k}> = \underline{w}^{T} \underline{x} + w_{N+1}$$

Decision surface are perpendicular bisecting hyperplanes of lines joining class means.



S₂-S₄ boundary is redundant.

Example: Minimum Distance to Class Member Classifier

$$D(\underline{x}, S_k) = \min_{m=1,\dots,M_k} \{d(\underline{x}, \underline{y}_m^{(k)})\}$$

Decision Rule:

$$\underline{x} \in S_j$$
 if $D(\underline{x}, S_j) = \min_k D(\underline{x}, S_k)$

Assign \underline{x} to the same class as the nearest prototype.

All points on the decision surface are equidistant from the closest 2 prototypes from different classes.

Generalized Linear Discriminant Functions (DHS. 5.3)

Quadratic Discriminant Function

$$g_k(\underline{x}) = \sum_{n=1}^{N} [w_{nn}^{(k)} x_n^2 + w_n^{(k)} x_n] + \sum_{n=1}^{N-1} \sum_{j=n+1}^{N} w_{nj}^{(k)} x_n x_j + w_{N+1}^{(k)}$$

$$g_k(\underline{x}) = \underline{x}^T \underline{A}_k \underline{x} + \underline{x}^T \underline{b}_k + w_{N+1}^{(k)}$$

Weights in symmetric matrix Ak

Vector bk

No. of terms – N square terms

N linear

N(N-1)/2 cross product terms

1 constant term

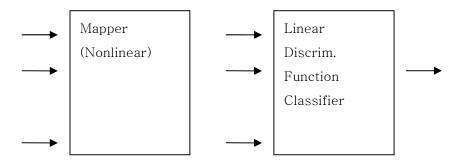
Let'generalize

Nonlinear, but can be cast in the form of a linear classifier

Let
$$\underline{\mathbf{f}} = [x_1^2, ..., x_N^2, x_1, ..., x_N, x_1x_2, x_1x_3, ..., x_{N-1}x_N]^T = [f_1, ..., f_N, f_{N+1}, ..., f_{2N}, f_{2N+1}, ..., f_T]^T$$

where T=N(N+3)/2

$$g_k(\underline{x}) = w_1^{(k)} f_1 + w_2^{(k)} f_2 + \dots + w_T^{(k)} f_T + w_{T+1}^{(k)} = w^{(k)} \bullet f + w_{T+1}^{(k)}$$



It is also called as the Φ Machine (Nilsson)

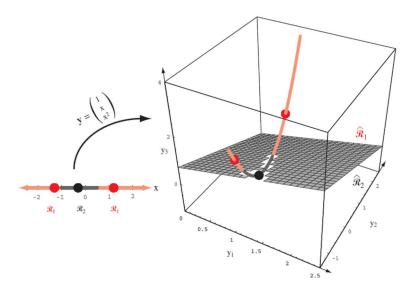


Figure 5.5: The mapping $\mathbf{y} = (1, x, x^2)^t$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting \mathbf{y} space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional x space.

KHU-BME Pattern Classification Lecture 03

Higher Order Polynomial Discriminant Functions

Can be extended to any r-th order polynomial discriminant function.

Let
$$\Phi(x) = w_1 f_1(\underline{x}) + w_2 f_2(\underline{x}) + ... + w_M f_M(\underline{x}) + w_{M+1}$$

where $f_i(\underline{x})$ are linearly independent, real, single-valued functions independent of the weights.

Example:

i)
$$f_i(x) = x_i$$
 -> linear case

ii)
$$f_i(\underline{x}) = x_j^n x_l^m$$
 $j,l=1,...,N$ $n,m \in [0,1]$ -> quadratic

iii)
$$f_i(\underline{x}) = x_{l1}^{n1}, x_{l2}^{n2}, ..., x_{lr}^{nr}$$
 -> r-th order polymomial

$$l_i = 1,...,N$$

$$n_i \in [0,1]$$

We can use the Φ machine to map the r-th order polynomial nonlinear discriminant function classifier into a linear classifier that operates in a higher dimensional space.

Nonlinear Discriminant Functions

Piecewise Linear Discriminant Function

Any set of prototypes can be separated by a piecewise linear discriminant function.

However, we do not know how to solve for the weights yet.

It's coming soon! The techniques are known as linear training algorithms. ©