Notation Preliminaries

Unknown data vectors: x

Prototypes:

 $\underline{y}_{m}^{(k)}$ is the m-th prototype that belongs to class S_k k = class index m_k = no. of prototypes in S_k $y_{m}^{(k)}$, m = 1,2,..., m_k defines all prototypes of class S_k

Pattern Space (Dimensionality R) Unknown $\underline{\mathbf{x}}$ =($\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ..., \mathbf{x}_R$)^T Prototype $\underline{y}_m^{(k)} = (y_{1m}^{(k)}, y_{2m}^{(k)}, y_{3m}^{(k)}, ..., y_{Rm}^{(k)})$

Feature Space (Dimensionality N) Unknown $\underline{\mathbf{x}} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots, \mathbf{x}_N)^T$ Prototype $\underline{y}_m^{(k)} = (y_{1m}^{(k)}, y_{2m}^{(k)}, y_{3m}^{(k)}, \dots, y_{Nm}^{(k)})$

Classification Space (Dimensionality K) S_k, k=1,2,3,...K defines all classes.

Introductory Example

- Classify dirt and grass regions from aerial pictures or images.

Green component (features)

Decision Rule if x < 5.5, $x \in S_1 = dirt$ If $x \ge 5.5$, $x \in S_2 = grass$

- Better than randomly assigning class
- Will have classification errors? YES

How to improve?

- 1. Incorporate statistics of samples
- 2. Add more features

A. Possible features

- i. Blue
- ii. Red
- iii. Frequency: to get a feature, define some average frequency magnitude

over the image, \overline{g} .

iv. Texture regularity

Figure 2.10: If the covariances of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of d-1 dimensions, perpendicular to the line separating the means. In these 1-, 2-, and 3-dimensional examples, we indicate $p(\mathbf{x}|\omega_i)$ and the boundaries for the case $P(\omega_1) = P(\omega_2)$. In the 3-dimensional case, the grid plane separates \mathcal{R}_1 from \mathcal{R}_2 .

Inverse Crime

- Test performance on new data, not on the training set (no inverse crime)

Note

- 1. Important to select good features
- 2. Important to have a good classifier
- 3. Performance on new patterns (unknowns)
 - A. How well does the system generalize?
 - B. How representative is the training set of the actual unknown data?
 - C. What is the inherent dimensionality of the problem?
- 4. Can selection of a decision boundary be automated? Training or Learning
- 5. To what degree are underlying statistics of the samples (features) known? How can they be used to improve the classifier's performance? -> Statistical classification
- 6. Can these algorithms be implemented in parallel hardware for fast execution? Artificial neural networks
- 7. What if you don't know what classes the prototypes belong to? Unsupervised classification and Unsupervised learning.

Distance Functions

A distance function must satisfy:

1.
$$d(\underline{x}, y) = d(y, \underline{x})$$

- 2. $d(\underline{x}, \underline{y}) \le d(\underline{x}, \underline{z}) + d(\underline{z}, \underline{y})$
- 3. $d(\underline{x}, \underline{y}) = 0$, *iff* $\underline{x} = \underline{y}$
- 4. $d(\underline{x}, \underline{y}) \ge 0 \forall \underline{x}, \underline{y}$

Use of Distance Functions (Ex.)

Measure of the distance from an unknown \underline{x} to a class S_k :

$$D\left[\underline{x}, \left\{\underline{y}_{m}^{(k)}\right\}\right] = \frac{1}{M_{k}} \sum_{1}^{M_{k}} d^{2}\left(\underline{x}, \underline{y}_{m}^{(k)}\right)$$

This is Mean Square Distance *d* might be Euclidean distance

Data Normalization

Normalization is often required for distance functions to have the desired meaning.

Example 1

$$x_r' = \frac{x_r}{a_r}$$

where $a_r = \max_{k,m} \{y_{r_m}^{(k)}\} - \min_{k,m} \{y_{r_m}^{(k)}\}$

This is extremal value normalization (sensitive to noise)

Example 2

Less sensitive to noise

Let
$$a_r = \sigma_r$$

 $\sigma_r^2 = \frac{\sum_{k=1}^{K} \sum_{m=1}^{M_k} [y_{r_m}^{(k)} - \overline{y}_r]^2}{\sum_{k=1}^{K} M_k}$

where $\overline{y_r} = \left[\sum \sum y_{r_m}^{(k)}\right] / \sum_{k=1}^{K} M_k$

This is standard deviation normalization.

▲ Distribution Free Classification

(DHS Sec. 2.4 and Ch. 5)

Objective: Determine a function in feature space that specifies the membership in each class, partitioning the feature space into mutually exclusive regions by non-statistical criteria.

→ Discriminant Functions (or Characteristic Functions) => $g_k(\underline{x})$

Fundamentals

 $g_k(\underline{x})$ for k=1,2,...,K

A point \underline{x} is a member of class S_i

iff $g_i(\underline{x}) > g_j(\underline{x}) \forall j \neq i \leftarrow \text{Classification rule}$

Classification System

Feature Space N=2

Separating surfaces or decision boundaries defined by $g_k(\underline{x}) - g_j(\underline{x}) = 0$ separates S_k from S_j . There are K classes $\Longrightarrow \frac{K(K-1)}{2}$ possible decision boundaries, but some may be redundant (e.g. S₃-S₄ above)

 \geq

Note: g's are not unique

Can add constant to all g_k's:

$$\begin{split} g_k(\underline{x}) &<-> g_j(\underline{x}) \\ g_k(\underline{x}) + C &<-> g_j(\underline{x}) + C \end{split}$$

Can define new g':

 $g'_k(\underline{x})=f(g_k(\underline{x}))$ $g'_j(\underline{x})=f(g_j(\underline{x}))$ where f is a monotonic and increasing function

Example: N=2 classes, Minimum-distance-to-class classifier

 $d(\underline{x}, S_1) < d(\underline{x}, S_2) \Longrightarrow \underline{x} \in S_1$ Let $g_k(\underline{x}) = -d(\underline{x}, S_k)$ $g_1(\underline{x}) > g_2(\underline{x}) \Longrightarrow \underline{x} \in S_1$

 $\begin{array}{l} \hline \text{Decision rule for a 2-class problem} \\ \text{Let } g(k) = g_1(\underline{x}) - g_2(\underline{x}) \\ \text{If } g(\underline{x}) > 0, \quad \underline{x} \in S_1 \\ \text{If } g(\underline{x}) < 0, \quad \underline{x} \in S_2 \end{array}$

 $g_{k}(\underline{x}) = \underline{w}^{T}\underline{x} + w_{N+1}^{(k)} = \underline{w}^{(a)}\underline{x}^{(a)}$

- $\underline{x}^{(a)} = \begin{vmatrix} x_1 \\ \dots \\ x_N \\ 1 \end{vmatrix} = \text{input vector in augmented, (a), space}$
 - Superscript (a) is often suppressed

 $x_3=1$ plane in (3-D) augmented space.

여기에 수식을 입력하십시오.

For a 2-class problem:

$$g(\underline{\mathbf{x}}) = g_1(\underline{\mathbf{x}}) \cdot g_2(\underline{\mathbf{x}})$$

= $(\underline{\mathbf{w}}_1^T \underline{\mathbf{x}} + \mathbf{w}_{N+1}^{(1)}) - (\underline{\mathbf{w}}_2^T \underline{\mathbf{x}} + \mathbf{w}_{N+1}^{(2)})$
= $(\underline{\mathbf{w}}_1^T - \underline{\mathbf{w}}_2^T)\underline{\mathbf{x}} + (\mathbf{w}_{N+1}^{(1)} - \mathbf{w}_{N+1}^{(2)})$
 $g(\underline{\mathbf{x}}) = \underline{\mathbf{w}}^T \underline{\mathbf{x}} + \mathbf{w}_{N+1}$

Linear decision surface:

2-D, Line 3-D, plane N-D, hyperplane (N-1)-D

A Single Neuron Model

Calculate g for 2-class problem:

