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ABSTRACT: Independent component analysis (ICA) is an approach
to solve the blind source separation problem. In the original and
extended versions of ICA, nonlinearity functions are fixed to have
specific density forms such as super-Gaussian or sub-Gaussian,
thereby limiting their performance when sources with different
classes of densities are mixed in multichannel data. In this article, we
have incorporated a mixture density model such that no assumption
about source density would be required. We show that this leads to
better source separation due to increased flexibility in handling
source- densities with flexible parametric nonlinearity. The algorithm
was validated through simulation studies and its performance was
compared to other versions of ICA. The modified mixture density ICA
was then applied to functional magnetic resonance imaging (fMRI)
and electroencephalography (EEG) data to localize independent
sources of alpha activity in the human brain. A good spatial correla-
tion was found in the spatial distribution of alpha sources derived
independently from fMRI and EEG, suggesting that spontaneous
alpha rhythm can be imaged by fMRI using ICA without concurrent
acquisition of EEG. © 2004 Wiley Periodicals, Inc. Int J Imaging Syst Technol,
14, 170–180, 2004; Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/ima.20021
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I. INTRODUCTION
Independent component analysis (ICA) is an approach to solve the
blind source separation problem within the framework of informa-
tion maximization (INFOMAX), relying on a negative-entropy max-
imization, or mutual information minimization in an unsupervised
neural network (Bell and Sejnowski, 1995; Hyvärinen et al., 2001).
Current ICA algorithms attempt to find a linear weighting matrix
that is able to decompose a given data into statistically independent
sources whose density forms are assumed as nonlinearity functions
at every node of the unsupervised neural network. In the practical
applications of these ICAs, it is known that the quality of source
separation depends not on the selection of a specific learning method
but on the shape of nonlinearity, typically modeled by higher-order

polynomials or hyper-tangent functions under the assumption that
all sources are either super-Gaussians (i.e., peak sharper than a
Gaussian, positive kurtosis) or sub-Gaussians (i.e., flatter peak than
Gaussian, negative kurtosis). Therefore, if the data contains several
super-Gaussian and sub-Gaussian sources of different kurtosis, the
pre-fixed nonlinearity functions limit the quality of blind source
separation. Although there have been several attempts to solve this
problem, for example by switching pre-fixed nonlinearity functions
or approximating adaptive nonlinearity functions in maximum like-
lihood estimation, ICA still requires prior information on the nature
of the independent components such as the numbers of super- or
sub-Gaussian sources and constraint of source variance. Details of
these limitations are described in earlier reports (e.g., Hyvärinen et
al., 2001; Lee 1998; Lee et al., 1999).

Another limitation of current ICA approaches is that nonlinearity
functions in the nodes of unsupervised neural network are fixed only
for specific densities. This feature limits the performance of source
separation due to its high sensitivity to the signal-to-noise ratio
(SNR) (Pearlmutter and Parra, 1997; Xu et al., 1997). To overcome
this limitation, a flexible nonlinearity approach has been investigated
previously in the INFOMAX algorithm such that no assumption
would be required about the source density. In a simulation study,
Xu et al. (1997) demonstrated that this adaptive feature of the
nonlinearity function reduced the source estimation error by tuning
flexible parametric nonlinearity of each channel to the unknown
source density without any a priori knowledge of the sources such
as the number of super- or sub-Gaussian sources and their variances.
Heuristic randomization was employed to initialize the shaping
parameters of the mixture density model and sequential gradients
were utilized to learn the shape of nonlinearity in order to approx-
imate the unknown source density.

However, it was found that an improper random initialization
could trap INFOMAX into a local maxima or lead to some non-
separation solutions (Xu et al., 1998). This phenomenon becomes
more dominant as the data dimension increases and limits the
practical application of ICA in modalities such as fMRI or EEG
where a relatively large number of sensors are used. In this work, we
have implemented a more efficient version of flexible nonlinearity
ICA (which we call modified mixture density ICA) to handle theCorrespondence to: Manbir Singh; e-mail: msingh@usc.edu
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higher dimensionality of data without requiring any a priori knowl-
edge of unknown sources.

The modified mixture density ICA has two features: (1) im-
proved initialization of the shaping parameters to the data probabil-
ity density using simulated annealing (Press, et al., 1994) and (2)
annealing of the learning rate to increase the convergence speed and
stability of the solution. The performance of this ICA was compared
to conventional ICA methods via computer simulation studies.

In recent years, ICA has been actively applied to the analysis of
fMRI and EEG data to decompose the measured signals into statis-
tically independent components. It has been suggested that ICA can
isolate the neurological signal components hidden in the measure-
ments and also remove unnecessary artifacts (or noise) efficiently
without any specific design of digital filters (Jung et al., 1998;
Martin et al., 1998). ICA becomes even more useful in analyzing
fMRI and EEG data, when a priori models of neural activity are not
available and spatiotemporal data are highly contaminated by un-
known physiological artifacts and noise. One such example relates
to recent attempts to localize the sources of alpha rhythm inside the
human brain as described below.

The alpha activity of the brain is a rhythmic pattern of EEG with
a characteristic frequency band of 8 to 12 Hz and occurs when the
brain is relaxed. It is significantly attenuated with eyes open or
mental tasks. Its activity is also intermittent and involuntary. Several
investigators have used combined EEG-fMRI measurements to lo-
calize alpha activity using conventional model based approaches.
These approaches, described below, have relied upon linear corre-
lation analysis (Bandettini, 1993) or SPM (Friston et al., 1996) to
detect the activated pixels. The first alpha imaging studies based on
near- simultaneous fMRI-EEG measurements were conducted in our
laboratory (Patel et al., 1997; Singh et al., 1998), where the concept
of using the temporal modulation of the alpha band power to model
the predictor (or reference function) was developed. In these studies
it was found that the signal, which represented a combination of
blood oxygenation level dependent (BOLD) and in-flow effects,
decreased in portions of the occipital and parietal lobes. These
results are consistent with the first alpha localization studies from
EEG alone incorporating a distributed source model (Patel et al.,
1999).

Subsequent studies by Goldman et al. (2002) suggested that
increased alpha power was correlated with decreased BOLD signal
in multiple regions of occipital, superior temporal, inferior frontal,
and cingulate cortex, and with increased signal in the thalamus and
insula. These results are consistent with Moormann et al. (2003)
who reported mostly negative correlation between alpha power and
the BOLD signal in the occipital cortex and certain parietal, tem-
poral and frontal regions. However, Laufs et al. (2003) reported a
positive correlation between alpha power and the BOLD signal in
occipital and mid-cingulate regions and a negative correlation in
specific prefrontal and parietal regions by performing multisubject
group analysis of continuous and simultaneous EEG/fMRI data.
Thus it appears that a negative correlation between alpha power and
the BOLD signal is established within the parietal, temporal, and
certain prefrontal regions, but at present it is unclear whether there
is a positive or negative correlation in certain occipital and frontal
regions.

To avoid potential problems of simultaneous fMRI and EEG
acquisitions, the study reported here was conducted to investigate
the possibility of using fMRI alone, followed by ICA to extract
pixels whose time courses conformed to a likely generation of alpha
activity. A three-condition fMRI study was conducted with human

subjects where one of the conditions involved closing eyes and
relaxing, thus making it a condition likely to generate alpha activity.
The other two conditions—eyes open in a lighted room or engaged
in a mental arithmetic task—were designed to attenuate alpha ac-
tivity. EEG data were acquired outside the magnet to verify the
generation and suppression of alpha activity from the same subjects
during the same three conditions. Alpha rhythms were extracted
from the EEG data by using ICA and their sources were localized
using a distributed source imaging approach (Khosla, 1996; Patel et
al., 1999; Singh et al., 1984). The resulting EEG localizations were
spatially correlated to fMRI ICA-determined alpha activity maps
suggesting that spontaneous alpha rhythm can be imaged without
concurrent acquisition of EEG and fMRI. Details of the methodol-
ogy and results are described in the following sections.

II. METHOD
A. Background of Independent Component Analysis. In-
dependent component analysis (ICA) is a method for solving the
blind source separation problem. Thus the problem is to recover
N-independent source signals, S � [s1; s2;. . .;sN], from N linearly
mixed signals, X � [x1; x2;. . .;xN], where the source si is a zero
mean row vector statistically independent from all other sources, and
xi is a row vector whose elements are linear mixture of all si. Each
xi is measured in a channel located at different time or space. This
relationship between S and X can be expressed as a simple matrix
form:

X � AS, (1)

where A � [a1 a2 . . . aN] is unknown full rank matrix and its column
vector ai defines the mixing weights between the source signals
(Martin et al., 1998a).

Given minimal a priori knowledge of the nature of the sources
and the mixing structure (i.e., sources are statistically independent
and linearly mixed in measurement), the task of ICA is to estimate
the original source signals, U � [u1; u2;. . .;uN] from the measure-
ment X by finding unmixing matrix W that makes ui as statistically
independent as possible:

U � WX. (2)

Because source signals are specified only by a statistical inde-
pendence, their magnitude and mixing orders cannot be identified.
Therefore, we expect that W is not equal to A�1 but WA is equal to
PC. Here P is an arbitrary permutation matrix whose elements are
all zeros except for a 1 in every row and column. C is an arbitrary
scaling matrix whose diagonal elements are only nonzeros. Note that
P and C are identifiable only if A is known.

Strict statistical independence yields the general framework of
ICA that employs INFOMAX criteria to find the unmixing matrix W
based on an iterative unsupervised neural network implemented with
a weighting matrix W and N nonlinearity functions yi � gi(ui), 1 �
i � N. The network finds the optimal solution when W maximizes
the joint entropy Y � [y1; y2;. . .;yN] of H(Y), implying the achieve-
ment of minimization of mutual information between estimates of
source signals U.

The gradient of W to maximize H(Y) is evaluated according to
(3) below for each column of X. The “learning” of W stops when the
norm of gradient converges to zero:
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�W �
�H(Y)

�W
WTW � [I � �(U)UT]W, (3)

where �(U) is called a score function defined as �(U) � [�(u1);
�(u2);. . .;�(uN)], �(ui) � (�p(ui)/�ui)/p(ui) and p(ui) is an estimate
of the source probability density function (pdf) modeled as p(ui) �
�gi(ui)/�ui.

Matching of nonlinearity gi(ui) with the cumulative density func-
tion (cdf) of the estimated source ui is necessary to achieve the
global maximum of H(Y). For instance, Bell and Sejnowski (1995)
and Lee (1998) showed that if sources S (mixed in X) have a fixed
form of density such as super-Gaussian (or sub-Gaussian), the
pre-fixed nonlinearity function such as a typical logistic sigmoid
function (or variant of hyper-tangential function) could be used as a
good estimate of cdf of super (or sub-Gaussian) sources to separate
these types of sources from the mixture of sources. However,
because of the pre-fixed nonlinearity functions, these models do not
guarantee to achieve the global solution W and are limited in
separating sources with different densities such as uniform and
Gaussian sources.

To overcome these limitations Xu et al. (1997, 1998) showed
first that the global solution of INFOMAX could be achieved by
adjusting the following model of nonlinearity function to approxi-
mate any type of source density.

gi�ui) � �
j �1

J

�ij��rij�, (4)

where rij � bij (ui � aij), � (rij) � 1 (1 � exp(�rij)), �ij �
exp(�ij)/¥j � 1

j exp(�ij) for 1 � i � N and 1 � j � J.
The nonlinearity function gi(ui) is modeled as a weighted sum-

mation of J-logistic sigmoid functions, �(rij), that have three differ-
ent types of shaping parameters: bias aij, scale bij, and weight �ij. A
set of parameters {�ij, aij, bij} is randomly initialized and iteratively
updated at the constant rate to approximate the cdf of the source
signal si.* Using the flexible nonlinearity function shown in (4) the
score function and pdf of an estimate of source ui can be written as

�(ui) �
1

p�ui�
�
j�1

J

aijbij
2���rij� (5)

p�ui� � �
j�1

J

aijbij���rij�. (6)

Here, we focus on the adaptive algorithms of shaping parameters
incorporating (1) random initialization and (2) constant learning
rates. Their effect on the blind source separation problem will be
discussed in the following section.

B. Modified Mixture Density ICA and Its Simulation. The
mixture density ICA seeks to adapt the shape of gi(ui) to unknown
cdf of sources. Three shaping parameters were randomly initialized
and updated by adding a fixed ratio of their gradients to the previous

values. As we can see in (3) these parameters also determine the
ongoing unmixing matrix W. Therefore it is clear that the locality
and convergence speed of the solution W are sensitive to the
initialization of shaping parameters. Xu et al. (1998) reported that
the mixture density ICA guarantees the convergence of solution W
to the global maxima with high probability if and only if the random
initialization leads the initial solution to a nearby region of local
maxima.

To guide the initial solution to certain local maxima, we initialize
the parameter set to approximate the cdf of the signal measured at
each channel. This approximation plays a role in (1) confining the
initial range of shaping parameters to the range of the cdf of input
signals, thus improving stability by preventing the initial solution
from falling in the nonseparable domain and 2) tuning the shaping
parameters to have a particular cdf at the initial stage, thus achieving
faster convergence. Two main parameters, bias aij and scale bij, need
to be optimized as

	a*ij,b*ij
 �
min

{aij,bij}
�gi�ui� � cdf(xi)�2, (7)

where cdf(xi) represents the cdf of xi and are approximated by
high-order polynomials from xi before applying minimization.

In this study, the minimization of (7) is achieved by a simulated
annealing method that is able to find the global solutions surrounded
by multiple local solutions (Press et al., 1994). Also we add new
annealing step to the learning rates 	 of both W and {�ij, aij, bij} to
speed the convergence of W and {�ij, aij, bij},

	 � 	0�1 �
k

K�
2

, (8)

where 	0 is the initial value, k is the cumulative number of iteration,
and K is the total number of iteration.

In summary, following is the modified mixture ICA algorithm to
obtain the solution W and tune gi(ui) to the unknown source density.

1. Set the number of logistic sigmoid function J. Initialize W to
be identity and weight parameter {�ij} randomly in [0, 1]. Set
	w0, 	�0, 	a0, and 	b0.

2. Optimize {aij, bij} according to (7) and use them to initialize
gi(ui).

3. For each column of X compute the gradient of W and {�ij, aij,
bij} proposed by Xu et al., (1997, 1998). Use them to update
W and {�ij, aij, bij}.

4. If the norm of gradient W converges to an arbitrary threshold,
stop the learning procedure and go to step 5. Otherwise anneal
the learning rate 	w, 	�, 	a, and 	b using (8). Go to step 3.

5. Compute the final estimate of the original sources U accord-
ing to (2). Calculate the estimates of cdf and pdf of sources
according to (4) and (6).

We carried out an intensive simulation focusing on the effect of
flexible nonlinearity on the performance of ICA. This simulation
assumed that there exist 10 sources (N � 10) measured at 10
channels. Each measurement has 5000 samples (M � 5000). Five
super-Gaussian and two sub-Gaussian sources (bimodal) were gen-
erated using Laplacian density and Pearson mixture density model
(Lee, 1998) respectively. Two uniform sources and a Gaussian

* For further details of their adaptive algorithms, see the previous studies listed in
Xu et al. (1997, 1998).
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source were added to compare the performance of three different
versions of ICA. Note that the 10 sources had different kurtosis.

The data matrix X was acquired by multiplying S � [s1; s2;. . .;
s10] by a 10 � 10 mixing matrix A in which each element was
randomly selected in the range of [�1 1]. Three different score
functions—one for original ICA (Bell and Sejnowski, 1995), an-
other for extended ICA (Lee et al., 1999), the other for the modified
mixture density ICA—were implemented with 	w0 � 0.0001 	�0 �
0.001, 	a0 � 0.01, 	b0 � 0.001, J � 10, and K � 500. These
parameters were also applied to both fMRI and EEG of human
subjects.

For all three ICAs the permutation P and scaling C were found
that make WA equal to an identity. The performance of each ICA
was evaluated in terms of the fractional error ei between true sources
and their estimates.

ei �
�n � 1

M �si�n� � ui�n��2

�n � 1
M si�n�2

, (9)

where ui (n) is an estimate of si (n) after appling permutation and
scaling to the ith row of U.

We repeated above procedure 50 times with different random
sources S and mixing matrix A. At each time the fractional error
defined in (9) was calculated to compare the separation quality of
each ICA.

C. Experimental Design of fMRI and EEG. To obtain exper-
imental fMRI data, normal volunteers were imaged on a 1.5T GE
scanner using an echo planar imaging (EPI) sequence with field-of-
view or FOV � 24 � 24 cm2, Matrix Size � 64 � 64, echo- time
or TE � 45 ms, Flip angle � 90°, repetition time or TR � 4 s, 4
oblique contiguous slices, each 1 cm thick, and 125 time-series
images per slice. The first five images per slice were disregarded to
attain a steady state. Also anatomical images of the four slices and
images covering the whole brain were acquired to display the fMRI
and EEG results in relation to structure. Functional and structural
images were coregistered using the registration method as described
by Jeong et al. (2002).

To modulate alpha activity, we designed a 54-s ON-OFF proto-
col with three conditions, namely, (a) “Relaxation”(ON) where the
subject closed eyes and was instructed to relax in a darkened MRI
room to induce alpha activity, (b) “Mathematics” (OFF) where the
subject kept eyes closed in the darkened room and performed a
preassigned arithmetic task to reduce alpha, and (c) “Eyes-open”
(OFF) where the subject looked at the lighted MRI room in order to
suppress alpha activity. These three conditions were repeated three
times in a random order (i.e., “Relaxation”–“Eyes-open”– “Mathe-
matics”–“Eyes-open”–“Mathematics”–“Relaxation”–“Mathemat-
ics”–“Relaxation”–“Eyes-open”).

EEG data were obtained outside the magnet before the fMRI
experiment using an international standard 10–20 EEG system with
the sampling frequency of 256 Hz. The same three-condition exper-
imental paradigm described above was used to acquire EEG data.

D. Localization of Alpha Activity in fMRI Using Data-
Driven Method: ICA. Under ICA, each EPI image is placed into
subsequent rows, xi of the data matrix X, assuming that each image
is a sum of N spatially independent sources whose spatial distribu-
tions are defined in subsequent rows, si of the source matrix S (i.e.,
spatially independent source maps) and temporal profiles are defined

in subsequent columns of A (i.e., unique time courses of sources).
Here spatial independence indicates that the high values of each map
si are sparsely focused at specific pixels and rarely overlapped with
those of the other si. According to this assumption, the time course
observed at a given pixel (arbitrary column of X) can be modeled as
a weighted summation of N temporal profiles of A. The relative
weights are represented by the magnitudes of N sources S at a given
voxel. Therefore in ICA, the identification of pixels whose time
courses are significantly related to a given experimental protocol can
be achieved by the selection of appropriate temporal profiles defined
in columns of W�1 and the detection of active values in the maps,
ui of the selected temporal profiles (Martin et al., 1998a, 1998b).

In this study, the modified mixture density ICA determines the
unmixing matrix W as we proposed in Section II.B. The correlation
between the ON-OFF function (“1” for the relaxation and “0” for the
other conditions) and the time course associated with ui were used
to identify the alpha-activity-related component maps, uk among
120 spatially independent component maps. The threshold of these
correlation coefficients (positive or negative) was set at a given
significance level (i.e., critical p value of Spearman rank correlation
coefficient) (Blantz, 1992). After selecting the proper uk, the ele-
ments of uk were scaled to Z score vector zk and then thresholded at
the particular threshold zth (or p value) to detect active elements
(Martin et al., 1998b):

zk �
uk � mk


k
� zth for positive map (10)

zk �
uk � mk


k
� � zth for negative map,

where mk and 
k are the mean and standard deviation of elements in
uk.

E. Localization of Alpha Activity in EEG Using ICA and
Distributed Source Imaging. The distributed source imaging
approach (Khosla, 1996; Patel et al., 1999) has been used previously
to localize dipoles of evoked potentials (EP) and in magnetoen-
cephalography (MEG) (Singh et al., 1984). The forward problem is
formulated in the following way: (1) L dipoles are located at the
center of L voxels which are sampled equivalently in a four-sphere
head model (Zhou and Van Oosterom, 1992) (i.e., brain, cerebro-
spinal fluid, skull, and scalp sphere) and (2) at certain time t, the ith
electrode potential vi(t), 1 � i � N (the number of electrodes), is a
linear summation of the potentials originating from L dipoles d�l(t)
and outside noise.

v̂i�t� � �
m � 1

3L

gimqm�t� � ni�t�, (11)

where q(l � 1) � 1(t), q(l � 1) � 2(t), and q(l � 1) � 3(t) represent three
orthogonal components of the lth dipole d�l(t) along x, y, and z axis,
1 � l � L. gi,3*(l � 1) � 1, gi,3*(l � 1) � 2, and gi,3*(l � 1) � 3 are gains
that model the potentials at the ith electrode due to x, y, and z
components of d�l(t) with unit strength. Gain gim is known as a
nonlinear function of the location vector of an individual dipole d�l(t),
the position vector of the ith electrode, and electrical properties of
the head. The gain matrix can be calculated using an analytic
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formulation (Mosher et al., 1993). ni(t) is the noise at the ith
electrode.

Based on above forward problem for the electrode potential vi(t),
a maximum entropy (ME) method (Khosla, 1996; Patel et al., 1999)
was used to solve the inverse problem, which finds the most prob-
able net dipole strength �ql(t)� by minimizing the distance between
vi(t) and its estimate v̂i(t) in the least squares sense. The first
application of the distributed source imaging to localize brain alpha
activity was proposed by Patel et al., (1999) where the FFT dipole
approximation potential V̂i(fa) (Lehmann and Michel, 1989) was
utilized as the representation of electrode potential vi(t) in the
frequency domain. In this representation, V̂i(fa) denotes FFT coef-
ficients of vi(t) at the harmonic frequency fa (i.e., fa represents the
alpha activity frequency). The distance of V̂i(fa) from the origin, i.e.,
the average of all V̂i(fa) in the cosine-sine diagram (Patel et al.,
1999), is called the FFT dipole approximation potential and was
used to reveal the alpha activity potential in the frequency domain
ME approach. For example, if a single source of alpha activity is
oscillating at a specific frequency fa and phase � under a noise-free
condition, there exist N points of V̂i(fa) in the cosine-sine diagram,
lying on a straight line with angle �, since all v̂i(t), 1 � i � N, have
an identical phase �. Therefore each v̂i(t) can be approximated by the
distance of the ith point from the origin. If there are several sources
oscillating with different fa and � under low SNR, all points do not
lie on a straight line since vi(t) is a mixture of potentials from several
sources with different phases. In this case, the projection of each
entry to the fitted line was used to calculate the distances of all
points from the origin, which degrades the accuracy of the ME
method (Patel et al., 1999). To relieve the degradation in the ME
method that result from both asynchronous source activity and low
SNR, we propose to incorporate ICA into the distributed source
imaging approach.

Under ICA, each electrode potential vi(t) is placed into subse-
quent rows, xi of the data matrix X, assuming that each potential is
a sum of N temporally independent sources whose temporal profiles
are defined in subsequent rows, si of the source matrix S (i.e.,
temporally independent source profiles) and spatial weights are
defined in subsequent columns of A (i.e., unique spatial distribution
of sources). Here temporal independence indicates that the neuronal
epochs of each source are activated at different times (i.e., rarely
overlapped with those of the other si). According to this assumption,
the instant scalp potentials measured at the N electrodes (arbitrary
column of X) can be modeled as weighted summation of N spatial
distributions of sources, A. The relative weights are represented by
the magnitudes of N temporal profiles S at a given time (column of
S corresponding to one of X). Therefore in ICA, the identification of
sources of interest can be done by observing N temporally indepen-
dent components, ui, and their spatial distributions are defined in
corresponding columns of W�1.

To identify ui that reflects the temporal profile due to alpha
activity, we use the following criterion:

SNR(ui) �
�f � 8Hz

12Hz �DFT�ui��2�f � 8Hz
fs/2 �DFT�ui��2

� SNRth, (12)

where ui is the ith row of U and i represents the index of electrode,
1 � i � 19; DFT denotes the discrete time Fourier transform and fs
is the sampling frequency.

Here the SNR represents the ratio of alpha power (i.e., power in
the 8–12-Hz band) to background noise power and was used as the
basis to detect the significant alpha activity components uk.

To display the spatial distribution of alpha power due to each uk,
we can project uk back to the measurement space xi through Wk

�1

(i.e., the spatial weighting factor for the contribution of uk). The
projected signal from uk to the ith electrode, x̂i contains pure alpha
activity potential at the ith electrode contributed by only a single
alpha component and not any other components such as alpha
rhythms with different phases, physiological artifacts, and 60-Hz
noise. Therefore FFT dipole approximation potentials X̂i(fa) do not
have any deviation in the cosine-sine diagram. This results in the
reduction of approximation error. Note that all entries of X̂i(fa) lie on
the straight line since all X̂i(fa) have identical phase of a single
component uk. Because this X̂i(fa) contains one component, its net
dipole strengths, �ql� becomes much more focal than one of raw
X̂i(fa). Finally the elements of �ql� are converted to Z-score values
and thresholded at the statistical p-threshold in to screen out the
active dipoles from spurious dipoles. The active voxels are inter-
preted as the source map of the component uk. The above localiza-
tion procedure is repeated for all uk.

We also calculate the spatial distribution of alpha power, palpha

(x̂i):

palpha(x̃i) � �
f � 8Hz

12Hz

�DFT�x̃i��2 (13)

and display palpha (x̂i) on 2D topography.
We conducted a simulation study to show the effects of asyn-

chronous sources and ICA source decomposition on the perfor-
mance of distributed EEG source imaging. In this simulation we
assumed that seven alpha sources were generating 10-Hz sinusoids
with different magnitudes and phases. The brain sphere was sampled
at 1 cm3 voxels; the total number of voxels inside the brain sphere
was 271. Voxel indexes of the seven source dipoles were 108, 150,
156, 159, 162, 165, and 196 respectively. Based on the above
configuration, we calculated the gain matrix to solve the forward and
inverse problem in the simulation. Standard conductivity values,
radii, and thickness of the four different spheres to model the head
as mentioned before (Zhou and van Oosterom, 1992) were adapted
from the literature (Mosher et al., 1993). Simulated EEG data were
calculated according to (11) (i.e., white Gaussian noise with SNR �
10).

For human studies, we measured the radius and thickness of the
four conducting spheres from the sagittal view of the subject’s MRI.
Three points (nasal, right, and left preauricular points) on the sub-
ject’s MRI were used as reference points to register the MRI
coordinate system to the spherical system (Khosla, 1996). Standard
conductivity values were assigned to each sphere (Mosher et al.,
1993). Every voxel within the spherical brain region (sized to 1 cm3)
was considered to be a dipole source.

III. RESULTS AND DISCUSSION
A. Simulation Study.

Case 1: Random Mixture. The plots in Figure 1(a) show a
typical result of the modified mixture density model for estimating
the pdf of unknown sources. Dashed lines represent the true source
densities and solid lines their estimates. At each channel the shaping
parameters of nonlinearity functions were initialized to approximate
the cdf of channel data according to (7) and then estimated through
the proposed algorithm described in Section II.B. It is obvious that
the resulting density forms of all simulated source signals match
their true ones.
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Figure 1(b) shows the flexible nonlinearity gi(ui) of the modified
mixture density ICA. It can be seen that the resulting gi(ui) was
tuned to approximate the cdf of the unknown source [i.e., each gi(ui)
approximates the integration of Figure 1(a)]. This provides good
evidence to suggest that the maximization of H(Y) was achieved
globally by the solution W resulting from the shaping parameters of
gi(ui). Because all ui are independent of each other, all yi are
statistically independent. Therefore, the maximum of H(Y) is equal
to the product of all H(yi) (Cover and Thomas, 1991). The maximum
of H(yi) is achieved if yi has a uniform density. This happens at only
one condition: gi(ui) � cdf of si (Xu et al., 1997).

Figure 1(c) shows the comparison of fractional errors produced
by three different ICAs: original, extended, and modified mixture
density ICA. Errors were averaged from 50 different S and A. The
original ICA separated only super-Gaussian group (i.e., s1, s3, s5,
and s7) with a mean error of about 9.14% of total power. The results
from the extended ICA also show higher errors in estimating the
sub-Gaussians and Gaussian sources than the modified mixture
density ICA.

The fractional errors of the modified mixture density ICA be-
came minimal [i.e., about 1.8% of the total power of si(n)] and

significantly less that those of the original and extended ICA. In its
application to blind source separation, the adaptation of nonlinearity
could provide the potential to outperform other ICAs with prese-
lected and fixed nonlinearity, by allowing more degrees of freedom
to the modified mixture density ICA.

Case 2: Mixture of Asynchronous Rhythms. Figure 2(a) shows
seven asynchronous alpha sources used to produce simulated EEG
data. Note that they are plotted at different colors, with different
strengths, and out of phase (45–270°), and partially overlapped with
each other. Each plot in Figure 2(b) shows the potentials measured
at electrodes of the scalp sphere. The measurement reflects the sum
of seven sinusoidal bursts with different phases.

The potentials in the frequency domain were calculated as de-
scribed in Section II.E. The characteristic frequency of alpha activity
was found at the frequency to have the maximal peak in the power
spectrum of measurements (i.e., fa � 10 Hz in this simulation).
Because sources are asynchronous and white Gaussian noise is

Figure 2. A simulated EEG source localization using the maximum
entropy (ME) method in the frequency domain. (a) Seven simulated
alpha rhythm sources where each source is coded in a different color.
(b) 19-electrode EEG data generated from the forward model. (c)
Cosine-sine diagram of (b). (d) FFT dipole approximation potentials of
(c). (e) Net dipole strengths obtained from ME method. Note that
dotted line indicates the threshold. (f) Locations of active dipoles at
p-threshold � 0.01. The different-colored x’s indicate the true loca-
tion of sources corresponding to the colored alpha activity in Figure
2(a) and black o’s represent the reconstructed location of these
sources.

Figure 1. Converged flexible density model and fractional error. (a)
Probability density functions of the true sources (solid) and the esti-
mated sources (dashed), super-Gaussian (s1, s3, s5, s7), sub-Gauss-
ian (s2, s4, s6, s10), and one Gaussian (s8). (b) Nonlinearities at all
channels, super-Gaussian (u1, u3, u5, u7), sub- Gaussians (u2, u4, u6,
u10), and Gaussian (u8). (c) Comparison of fractional errors resulting
from three ICAs.
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added, all entries in the cosine-sine diagram are scattered around the
least squares fitted line as shown in Figure 2(c). FFT dipole approx-
imation potentials of Figure 2(d) were used as target potentials in the
inverse problem of the ME method. The resulting net dipole
strengths are shown in Figure 2(e). We applied the p-threshold at
0.01 to reconstruct active dipoles sources from the other dipoles.
Figure 2(f) shows the true and reconstructed dipole sources inside
the brain sphere. Note that “x” indicates the locations of true dipole
sources colored as in Figure 2(a) and “o” represents the recon-
structed active dipoles. A total of eight sources at voxel indices of
45, 93, 108, 156, 159, 165, 199, and 200 were detected. Out of these
eight sources, only four sources (108, 156, 159, and 165) correspond
to true locations.

It was noted that as SNR decreased and phase difference in-
creased the localization error increased proportionally, which results
because both factors produce errors in approximating potentials in
the cosine-sine diagram. Even though we increased the number of
iterations to sharpen the dipole strengths (called the iterative ME
method; Patel et al., 1999), the number of reconstructed dipoles
corresponding to true sources did not increase any more, which
supports our conjecture “both asynchronocity and SNR determine
the accuracy of the ME method.”

The modified mixture density ICA was used to isolate the seven
alpha components from the simulated data. Alpha dominant com-
ponents of Figure 3(a) were selected according to (12) with thresh-
old of 1.5. Even though sources were asynchronous, the proposed
ICA algorithm could separate all seven sources properly within a
mean square error less than 5% of total power. Figure 3(b) shows
one example of the projection of alpha dominant component u13

[colored red in Fig. 3(a)] to 19 electrode potentials. It is clear that
only the third burst of Figure 2(b) was identified in all electrode
potentials.

The cosine-sine diagram from this alpha component was plotted
in Figure 3(c). It is clear that there exist no deviation of entries from
the fitted line since the projection data originate from a single-phase
source, u13. The FFT dipole approximation potentials of Figure 3(d)
were used to localize the net dipole strengths corresponding to this
alpha component. The resulting dipole strengths are shown in Figure
3(e) and then thresholded at 0.01 of the p-value. Only one dipole
was located at voxel 196, which matches the true location of s3

marked as red “x” in Figure 3(f).
The localization of other alpha components is displayed in Figure

3(g). Individual alpha components were in voxel 156 for u5, voxel
59 for u8, voxel 150 for u12, voxel 196 for u13, voxel 108 for u16,
voxel 162 for u18, and voxel 165 for u19, respectively. They are
matched exactly to the voxel index of the original sources s1 to s7.
Note that “x” and “o” were perfectly matched to each other, imply-
ing that direct localization of individual ICA-determined compo-
nents could enhance the accuracy of the distributed source imaging
approach by reducing approximation errors in the representation of
electrode potentials.

B. Human Study.
Validation of Experimental Protocol. Figure 4 shows the alpha

power spectrum density p(f) of EEG measurement at Fz (1st row)
and P4 (2nd row) electrodes during one minute of Relaxation (1st
column), Mathematics (2nd column), and Eyes-open (3rd column).
Strong alpha activity was clearly observed at the frequency band of
around 10–12 Hz during the Relaxation condition, whereas there
was relatively low power in the alpha band for either the Mathe-

matics or Eyes-open condition. This observation suggests that our
three-condition protocol could modulate alpha activity.

Spatially Independent Alpha Components in fMRI. Figure 5(a)
shows the slice locations used in this study to cover a large portion
of the possible regions of alpha activity. A total of 120 volumes of
four slices were rearranged into a matrix whose columns represent
the time courses of pixels, decomposed by the modified mixture
density ICA.

Among 120 columns of W�1 only two columns, 9th and 14th,
showed higher correlation coefficients than the threshold of 0.24
(i.e., p � 0.01). The correlation coefficients of the 9th and 14th
columns of W�1 with the ON-OFF function were 0.48 and 0.42,
respectively. Their corresponding task-related maps, u9 and u14,
were thereby chosen to be the spatially independent alpha compo-
nents. Time courses associated with these maps were shown in
Figure 5(c) and (e), respectively.

To detect positive or negative BOLD contrast resulting from
alpha activity, pixels were selected according to (10) and color-

Figure 3. ICA decomposition of simulated data and its localization
using ME method. (a) Seven alpha dominant components, each com-
ponent coded in a different color. (b) Projection of one alpha compo-
nent: u13 colored red in (a). (c) Cosine-sine diagram from the projec-
tion of u13. (d) FFT dipole approximation potentials of (c). (e) Net
strengths of distributed dipolar sources corresponding to (d) obtained
from ME method. (f) Location of dipole corresponding to the peak in
(e) shown as a black “o”. Red “x” indicates the location of u13

(corresponding to its true location marked as black “o”). (g) The
locations of all seven sources corresponding to the seven alpha
components (p-threshold � 0.01). The true locations of the other
sources are shown by different colors as in (a).
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coded red (positive BOLD map) and blue (negative BOLD map) in
the anotomical slices. As we can see in the first component shown
in Figure 5(b), most activated pixels of the positive map were
localized near the precuneus gyrus, right and left angular gyrus in
occipital and parietal lobes, consistent with brain regions suggested
to be involved in the generation of alpha in previous EEG studies
(Lee, 1998). Also the frontal regions around cingulate gyrus, left
inferior frontal gyrus, and middle frontal gyrus shown in Figure 5(d)
are in accordance with the results of the simultaneous fMRI/EEG
studies (Goldman et al., 2002; Laufs et al., 2003; Moormann et al.,
2003). Meanwhile in the negative maps shown in Figures 5(b) and
(d) we observed relatively sparse activation in left and right frontal
lobe, parietal lobe, and motor cortex. These activations were also
identified as possible alpha generators in the group analysis of an
fMRI/EEG study (Laufs et al., 2003).

Interestingly, major activations of different ICA component
maps (i.e., precuneus gyrus in u9 and cingulate gyrus in u14) showed
different time courses, suggesting that these areas may be involved
in generating asynchronous alpha activity. In these two areas, their
averaged time courses increased about 2.45 
 1.02% and 2.12 

1.05% respectively, showing slight positive correlation of BOLD
signals with the increase of alpha activity. These increased signals
during relaxation are consistent with our previous study (Singh et
al., 2002) where we observed functional connectivity between cin-
gulate gyrus and the precuneus gyrus. Also, these results are con-
sistent with the study by Greicius et al. (2003) showing that the
fMRI activation of the posterior/anterior cingulate cortex increases
at the resting epochs but decreases at the working memory epochs.
They reported that these precuneous and cingulate gyri were func-
tionally connected and may be critical to the retrieval of episodic
memories.

Temporally Independent Alpha Components in EEG. Three
components u3, u7, and u12, showed a relatively higher SNR than
the threshold of 1.5. In Figures 6(a)–(c), these three alpha dominant
components cleary demonstrate the alpha bursts around 11 Hz. The
first topographic map in Figure 6(d) shows the spatial distribution of
alpha power from the raw EEG data, and the rest the spatial
distribution of each alpha dominant component. The scale in Figure

7(d) indicates the magnitude of alpha power palpha (x̃i) using (13).
The electrodes are shown as black dots on the display.

As demonstrated in Figure 6(d), the alpha distribution of raw
EEG is only focused on the medial occipital lobe; however, the
topographies of independent components reveal additional regions
of the head which are not obvious in the 2D topography of raw EEG
data. The alpha power palpha(x̃i) due to u3 was highly localized at the
Pz and P4 electrodes, which is consistent with the fMRI activation
in the medial occipital lobe (i.e., precuneus gyrus), as shown in the
second and third slices of Figure 5(b). Interestingly, palpha(x̃i) due to
u7 was concentrated in the O2, O1, and T6 (right end of the parietal
lobe) corresponding to activation in the right parietal lobe of the 2nd

Figure 5. Slice locations and two spatially independent maps with
associated time courses highly correlated with experimental para-
digm showing increased alpha activity. (a) Location of the four se-
lected oblique slices in the subject’s brain. (b) 9th map thresholded at
Zth � 2.57 (p � 0.01). (c) Time course associated with (b) is shown by
the solid line. The dotted line denotes ON-OFF block function assum-
ing positive BOLD response during the relaxation. The correlation
coefficient between the dotted and solid lines, cc � 0.48. (d) 4th map
thresholded at Zth � 2.57 (p � 0.01). (e) Time course associated with
(d) and experimental protocol of relaxation, cc � 0.42. Red (or blue) of
(b) and (d) represents active voxels with higher positive (or negative)
Z value, called positive (or negative) alpha map.

Figure 4. Comparison of alpha power in EEG measured at Fz (fron-
tal, 1st row) and P4 (posterior, 2nd row) electrodes during relaxation
(1st column), mathematical task (2nd column) and open eyes condi-
tions (3rd column). The alpha peak (arrow) was clearly seen at 11 Hz
during relaxation for this subject, and was absent during the other
conditions.

Vol. 14, 170–180 (2004) 177



and 3rd fMRI slices (i.e., right and left angular gyrus). Also
palpha(x̃i) due to u12 appears to be localized in Fz (center of frontal
lobe), which is consistent with the activation in the 1st slice of the
2nd map shown in Figure 5(d) (i.e., cingulate gyrus).

These three alpha components are in good agreement with the
EEG topographical study (Makeig, 2002) showing that at least four
alpha activity components (central posterior alpha, left frontocentral
alpha, lateral posterior alpha, and right central alpha) contribute to
the alpha rhythms. Although source localization was not attempted
in the Makeig et al. (2002) study, their topographic locations are
consistent with the 3D localizations of the alpha sources obtained by
us using ICA.

Localization of Alpha Dominant Components Using EEG Source
Localization. Three alpha dominant components—u3, u7, and
u12—were localized separately using the ME method at 0.01 of the
p-threshold. We applied this significance level equally to the anal-
ysis of fMRI and EEG source localizations (without or with the

mixture density ICA) in order to compare all possible sources at the
identical significance level. Figure 7 shows the comparison of the
active dipoles identified from raw EEG data (left column) and three
alpha dominant components (right column) with the positive and
negative fMRI activations shown in Figures 5(b) and (d). In each
figure, active EEG dipoles were denoted as green boxes. The red and
blue pixels indicate activations corresponding to the positive and
negative fMRI maps respectively. The yellow pixels show the over-
lap of fMRI/EEG activity. The left-column images represent the
results of the ME method without ICA and the right-column images
those of the ME method with ICA.

We observed that active dipoles from individual alpha dom-
inant components were sparsely distributed in different regions
such as the precuneus gyrus of the middle occipital lobe (u3),
near the angular gyrus of the parieto-occipital lobe (u7), the
cingulate gyrus, and middle frontal gyrus of the frontal lobe
(u12). Active dipoles around the angular gyrus were 1–3 cm from

Figure 6. Comparison of measured EEG topography to ICA based topography. (a)–(c) Three alpha dominant components from ICA where (a)
is component u3, (b) is component u7, and (c) is component u12. (d) Spatial distribution of alpha power of the first subject from raw EEG
measurement (left), and three alpha dominant components: u3, u7, and u12 (second from the left and toward the right).
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the positive activations identified by fMRI as the alpha activity.
The locations of these dipoles show good agreement with the
positive fMRI activation of this study. See the white boxes in
Figure 7.

This study is the first attempt, to our knowledge, to show the
spatial consistency of the alpha activity sources in separately mea-
sured fMRI and EEG that are fully analyzed by the data-driven ICA
approach.

IV. CONCLUSION
We modified the mixture density ICA by incorporating proper
initialization and annealing of its shaping parameters such that no
assumption about the probability density of sources would be re-
quired. With this modification, the convergence of parameters be-
comes more stable and faster for application to higher dimensional
data such as fMRI and EEG. The performance of the modified
mixture density ICA algorithm was demonstrated through simula-
tion studies. We show that the ICA formulated in this work is able
to separate unknown independent sources with different types of
densities with less estimation errors than other ICAs, which have
fixed nonlinearity functions depending on a priori knowledge of
source densities.

The modified mixture density ICA was applied to localize
sources of alpha activity in the human brain using fMRI alone and
also using EEG alone. It was found that this ICA separates out the
alpha activity sources blindly that are highly correlated with the
experimental paradigms of both modalities. The ICA-detected alpha
activity maps of fMRI are found to be strongly correlated with those
of the EEG localization algorithms, suggesting the usefulness of the
modified mixture density ICA in analyzing spatiotemporal data like
fMRI and EEG.
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