IMLPR Homework 1 Solutions

1. The discriminant functions are

$$
\begin{aligned}
& g_{1}(\underline{x})=-x_{1}+x_{2} \\
& g_{2}(\underline{x})=x_{1}+x_{2}-1 \\
& g_{3}(\underline{x})=-x_{2}
\end{aligned}
$$

Then assign \underline{x} to S_{k} iff $g_{k}(\underline{x})>g_{j}(\underline{x})$ for all $j \neq k$
(a) Draw the decision boundaries. Label Classified regions
$g_{1}(\underline{x})=-x_{1}+x_{2}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=\underline{w}^{\top} \underline{x}^{(a)}, w_{1}^{\top}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]$
$g_{2}(\underline{x})=\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=\underline{w}^{\top} \underline{x}^{(a)}, w_{2}^{\top}=\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]$
$g_{3}(\underline{x})=\left[\begin{array}{lll}0 & -1 & 0\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=\underline{w}^{\top} \underline{x}^{(a)}, w_{3}^{\top}=\left[\begin{array}{lll}0 & -1 & 0\end{array}\right]$

The decision boundary for S_{1} over S_{2}
$\left(w_{1}{ }^{\top}-w_{2}^{\top}\right) x^{(a)}=0,\left[\begin{array}{lll}-2 & 0 & 1\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=0,-2 x_{1}+1=0, x_{1}=1 / 2$
The decision boundary for S_{2} over S_{3}
$\left(w_{2}{ }^{\top}-w_{3}{ }^{\top}\right) \underline{x}^{(a)}=0,\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=0, x_{2}=-1 / 2 x_{1}+1 / 2$
The decision boundary for S_{3} over S_{1}
$\left(w_{3}{ }^{\top}-w_{1}^{\top}\right) \underline{x}^{(a)}=0,\left[\begin{array}{lll}1 & -2 & 0\end{array}\right]\left[\begin{array}{lll}x_{1} & x_{2} & 1\end{array}\right]^{\top}=0, x_{2}=1 / 2 x_{1}$
(b) The decision boundaries can be drawn as

According to the decision rule $\underline{x} \in S_{1}$, if $g_{1}(\underline{x})>g_{2}(\underline{x})$ and $g_{1}(\underline{x})>g_{3}(\underline{x})$
$g_{1}(\underline{x})-g_{2}(\underline{x})>0$ and $g_{1}(\underline{x})-g_{3}(\underline{x})>0$
$-2 x_{1}+1>0$ and $-x_{1}+2 x_{2}>0$
$x_{1}<1 / 2$ and $x_{2}>1 / 2 x_{1}$

Likewise for $\underline{x} \in S_{2}$ and $\underline{x} \in S_{3}$,
(c) Classify a point $\underline{x}=(1,1)^{\top}$

Use the decision boundaries in the plot or $g_{2}(\underline{x})>g_{1}(\underline{x})$ and $g_{2}(\underline{x})>g_{3}(\underline{x})$

$$
\underline{x} \in S_{2}
$$

