IMLPR Homework 1 Solutions

1. The discriminant functions are

$$g_1(\underline{x}) = -x_1 + x_2$$

$$g_2(x) = x_1 + x_2 - 1$$

$$g_3(\underline{x}) = -x_2$$

Then assign x to S_k iff $g_k(x) > g_i(x)$ for all $j \neq k$

(a) Draw the decision boundaries. Label Classified regions

$$g_1(x) = -x_1 + x_2 = [-1 \ 1 \ 0][x_1 \ x_2 \ 1]^T = w^T x^{(a)}, \ w_1^T = [-1 \ 1 \ 0]$$

$$g_2(\underline{x}) = [1 \ 1 \ -1][x_1 \ x_2 \ 1]^T = \underline{w}^T \underline{x}^{(a)}, \ w_2^T = [1 \ 1 \ -1]$$

$$g_3(\underline{x}) = [0 -1 \ 0][x_1 \ x_2 \ 1]^T = \underline{w}^T \underline{x}^{(a)}, \ w_3^T = [0 -1 \ 0]$$

The decision boundary for S_1 over S_2

$$(w_1^T w_2^T)x^{(a)} = 0$$
, $[-2 \ 0 \ 1][x_1 \ x_2 \ 1]^T = 0$, $-2x_1 + 1 = 0$, $x_1 = 1/2$

The decision boundary for S_2 over S_3

$$(w_2^T w_3^T)x^{(a)} = 0$$
, $[1 \ 2 \ -1][x_1 \ x_2 \ 1]^T = 0$, $x_2 = -1/2x_1 + 1/2$

The decision boundary for S_3 over S_1

$$(w_3{}^T_{-}\ w_1{}^T)\underline{x}^{(a)}{=}0,\ [1\ -2\ 0][x_1\ x_2\ 1]^T{=}0,\ x_2{=}1/2x_1$$

(b) The decision boundaries can be drawn as

According to the decision rule $\underline{x} \in S_{1,}$ if $g_1(\underline{x}) > g_2(\underline{x})$ and $g_1(\underline{x}) > g_3(\underline{x})$ $g_1(\underline{x}) - g_2(\underline{x}) > 0$ and $g_1(\underline{x}) - g_3(\underline{x}) > 0$ $-2x_1 + 1 > 0$ and $-x_1 + 2x_2 > 0$ $x_1 < 1/2$ and $x_2 > 1/2x_1$

Likewise for $\underline{x} \in S_2$ and $\underline{x} \in S_{3}$,

(c) Classify a point $\underline{x}=(1,1)^T$ Use the decision boundaries in the plot or $g_2(\underline{x})>g_1(\underline{x})$ and $g_2(\underline{x})>g_3(\underline{x})$ $\underline{x}\in S_2$