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Principal Components Analysis

14.1. GOALS OF THIS CHAPTER

Previously, we explored how the MATLABW software can be used to visualize neural
data. This is a powerful tool. For example, a simple 2D tuning curve can demonstrate
how a single neuron encodes a stimulus parameter in terms of a firing rate. However, it
is not clear how this applies to multidimensional data. How do you represent stimulus
encoding of a population of neurons or of a time-varying firing rate?

One solution is to try to compress data to make them easier to work with. If you can reduce
the dimensionality to two or three dimensions, you can then use your visualization tools. In
this chapter you will see how principal components analysis can be used to perform
dimensionality reduction. You will also explore an application of this technique to spike sort
neuronal waveforms. This will prepare you for the next chapter, where you will use principal
components to capture the temporal aspects of a peri-stimulus time histogram.

14.2. BACKGROUND

Principal components analysis (PCA) performs a linear transformation on data and can be
used to reduce multidimensional data down to a few dimensions for easier analysis. The
idea is that many large datasets contain correlations between the dimensions, so that a por-
tion of the data is redundant. PCA will transform the data so that as much variation as
possible will be crammed into the fewest possible dimensions. This allows you to compress
your data by ignoring other dimensions. To apply PCA, you first need to understand how
the correlations between dimensions can be described by a covariance matrix.

14.2.1. Covariance Matrices

You will start by analyzing some simulated data. You will look at zero-mean, Gaussian
noise (“white noise”) in two dimensions. You can generate this in MATLAB using the
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function normrnd. In the first variable (a), the two dimensions will be uncorrelated, but in
the second (b) there will be a significant correlation between the two dimensions. Use the
following code to generate a and b:

n=500; %n = number of datapoints
a(:,1)=normrnd(0,1,n,1); %n random Gaussian values with mean 0, std.

%deviation 1
a(:,2)=normrnd(0,1,n,1); %Repeat for the 2nd dimension.
b(:,1)=normrnd(0,1,n,1); %n random Gaussian values with mean 0, std.

%deviation 1
b(:,2)=b(:,1)*0.5+0.5*normrnd(0,1,n,1); %For b, the 2nd dimension is correlated with the 1st

If you plot the columns of these variables against one another, the data should look
something like Figure 14.1.

You should alreadybe familiarwith the concepts ofmean, variance, and standard deviation. If the
sample data consist of n observations stored in a vector x, the samplemean is defined as follows:

�x ¼ 1

n

Xn
i¼1

xi ð14:1Þ

The variance (s2) of the sample is simply the expected value (mean) of the squared devia-
tions from the sample mean:

s2 ¼ 1

n

Xn
i¼1
ðxi � �xÞ2 ð14:2Þ

The standard deviation (s) is just the square root of the variance. Unfortunately, using the
preceding expression as an estimate of the sample variance is a bad idea because this esti-
mate is biased: it systematically underestimates the variance. However, it can be shown that
the unbiased estimator is formed by replacing n by n � 1 in the first term. Thus, the sample
variance (s2) is usually defined as follows:

s2 ¼ 1

n� 1

Xn
i¼1
ðxi � �xÞ2 ð14:3Þ
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FIGURE 14.1 Samples from a two-dimensional Gaussian distribution where the dimensions are uncorrelated
(A) and correlated (B).

184 14. PRINCIPAL COMPONENTS ANALYSIS



This is how the function var in MATLAB is defined. If you subtract the mean from your
data, then you can more compactly express the sample variance as follows:

s2 ¼ 1

n� 1
ðx� �xÞTðx� �xÞ ð14:4Þ

The superscript T signifies a transpose, whereby matrix columns are changed to rows and
vice versa: an m by n matrix becomes an n by m matrix. In MATLAB, a transpose is desig-
nated with an apostrophe placed after the variable.

Let’s compare the preceding formula with the function var. In the following code, do the
two expressions give the same result?

var(a(:,1)) %Compute sample variance of 1st dim of "a"
c=a(:,1)-mean(a(:,1)); %Subtract mean from 1st dim of "a"
c'*c/(n-1) %Compute sample variance of 1st dim of "a"

%Note the apostrophe denoting transpose(c)

The covariance is analogous to the variance, except that it is computed between two vec-
tors, not a vector and itself. If you have a second data vector y with n independent values,
then the sample covariance is expressed as follows:

covðx; yÞ ¼ 1

n� 1

Xn
i¼1
ðxi � �xÞðyi � �yÞ ð14:5Þ

You can see that if x and y are the same, the sample covariance is the same as the sample
variance. Also, if x and y are uncorrelated, the covariance should be zero. A positive covari-
ance means that when x is large, so is y; while a negative covariance means that when x is
large, y is small. The last thing you need to define is the covariance matrix. If the data have m
dimensions, then the covariance matrix is an m by m matrix where the diagonal terms are
the variance of each dimension and the off-diagonal terms are the covariances between
dimensions. If the additional dimensions are stored as extra columns in variable x (so x
becomes an n by m matrix), then the sample covariance can be computed the same way
as the sample variance:

covðxÞ ¼ 1

n� 1
ðx� �xÞTðx� �xÞ ð14:6Þ

This is computed by the function cov in MATLAB. Compare the two methods by using the
following code (the function repmat is used to create multiple copies of a vector):

cov(a) %Compute the covariance matrix for "a"
c=a-repmat(mean(a),n,1); %Subtract the mean from "a"
c'*c/(n-1) %Compute the covariance matrix for "a"

The covariance of the correlated noise should have large off-diagonal terms. One reason
to compute the covariance is that it plays the same role in the multivariate Gaussian distri-
bution as the variance plays in the univariate Gaussian. You can use the covariance and the
function mvnrand (mvn stands for multivariate normal) in MATLAB to generate new multi-
variate correlated noise (b2). Plot b2 on top of the correlated noise generated earlier (b). Did
the covariance matrix adequately capture the structure of the data?
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sigma = cov(b) %Compute the covariance matrix of b
b2=mvnrnd([0 0],sigma,n); %Generatenewzero-meannoisewith the samecovariancematrix

14.2.2. Principal Components

Principal components analysis is essentially just a coordinate transformation. The origi-
nal data are plotted on an X-axis and a Y-axis. PCA seeks to rotate these two axes so that
the new axis X’ lies along the direction of maximum variation in the data. PCA requires that
the axes be perpendicular, so in two dimensions the choice of X’ will determine Y’. You
obtain the transformed data by reading the x and y values off this new set of axes, X’ and
Y’. For more than two dimensions, the first axis is in the direction of most variation; the sec-
ond, in direction of the next-most variation; and so on.

How do you get your new set of axes? It turns out they are related to the eigenvalues
and eigenvectors of the covariance matrix you just calculated. We previously used
eigenvalues and eigenvectors to describe the behavior of a linear system of equations.
In PCA, each eigenvector is a unit vector pointing in the direction of a new coordinate
axis, and the axis with the highest eigenvalue is the axis that explains the most
variation.

This concept may seem confusing, so start by looking at the correlated noise data (b). You
could make a decent guess at the principal components just by looking at the data: the first
principal component line should fall on the long axis of the ellipse-shaped cluster. You can
use the function eig in MATLAB to compute the eigenvectors and eigenvalues of the covari-
ance matrix sigma you computed previously:

[V, D] = eig(sigma) %V = eigenvectors, D = eigenvalues for covariance matrix sigma

This will output something like the following (because the noise was generated randomly,
the exact values will vary):

V =
0.5387 -0.8425
-0.8425 -0.5387

D =
0.2048 0
0 1.3341

The eigenvalues are stored on the diagonal of D, while the corresponding eigenvectors
are the rows stored in V. Because the second eigenvalue is bigger, the second eigenvector
is the first principal component. This means that a vector pointing from the origin to
(–0.8445, –0.5387) lies along the axis of maximum variation in the data. Type the following
to plot the new coordinate axes on the original data:

plot(b(:,1),b(:,2),'b.'); %Plot correlated noise
hold on
plot(3*[-V(1,1) V(1,1)],3*[-V(1,2) V(1,2)],'k') %Plot axis in direction of 1st eigenvector
plot(3*[-V(2,1) V(2,1)],3*[-V(2,2) V(2,2)],'k') %Plot axis in direction of 2nd eigenvector

This will produce a graph like the one in Figure 14.2.
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Now you use these new coordinate axes to reassign the (X,Y) values to all your data-
points. First, you want to reorder the eigenvectors so that the first principal component is
in the first row. Then you can simply multiply the data by this reordered matrix to obtain
the new, transformed data. For example:

V2(:,1) = V(:,2); %Place the 1st principal component in the 1st row
V2(:,2) = V(:,1); %Place the 2nd principal component in the 2nd row
newB = b*V2; %Project data on PC coordinates

If you plot these transformed data, it is clear that you just rotated the data so that most of
the variation lies along the X-axis, as shown in Figure 14.3.

If you stop here, you haven’t gained much, since the transformed data have just as many
dimensions as the original data. However, if you wanted to compress the data, you can now

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Principal component (PC) axes

FIGURE 14.2 The first two principal component axes plotted with the original correlated data b.
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FIGURE 14.3 The correlated data b projected on the first two principal components.

18714.2. BACKGROUND



just throw away the second column (the data plotted on the Y-axis in Figure 14.3). The
whole point of PCA is that if you force as much of the variation as possible into a few
dimensions, you can throw away the rest without losing much information.

Howmuch variation can you capture by doing this? It turns out that the fraction of variation
captured by each principal component is the ratio of its eigenvalue to the sumof all the eigenva-
lues. For example, the first principal component has an eigenvalue of around 1.33, and the sec-
ond principal component has an eigenvalue of around 0.20. Thatmeans if you keep just the first
column of the transformed data, you still keep 87% of the data (0.87¼1.33/[1.33þ0.20]). That is,
you can compress the size of the data by 50% but lose only 13% of the variation.

Conveniently, MATLAB already has a function that performs all these calculations in
one fell swoop: princomp. Type the following to compute principal components for the
correlated data:

[coeff,score,latent]=princomp(b); %Compute principal components of data in b

The eigenvectors are stored in the variable coeff, the eigenvalues are stored in latent, and
the transformed data (the old data projected onto the new PC axes) are stored in score.
MATLAB even orders the eigenvectors so that the one with highest eigenvalue is first.

14.2.3. Spike Sorting

One common application of PCA is the spike sorting of neural data. Typically, a data
acquisition system monitors a raw voltage trace. Every time the voltage crosses some
threshold, the raw voltage is sampled during a time window surrounding this crossing to
produce the recorded spike waveform. For example, in one commercially available data
acquisition system (Cerebus system, Cyberkinetics Neurotechnology Systems, Inc.), each
spike waveform consists of a 1600 ms section of the voltage trace sampled 30 times per mil-
lisecond for a total of 48 data points.

Because any experimental system contains noise, the threshold crossing is often trig-
gered by a chance deviation from the mean and not an action potential. Thus, after these
recordings are made, the noise must be differentiated from the real spikes. You must also
determine if the real spikes came from one or many neurons and then sort them accord-
ingly. How do you compare waveforms? You can start by plotting them all on the same
graph. For example, Figure 14.4 contains the first 200 waveforms from one electrode of a
multielectrode array recording from the primary motor cortex in a macaque monkey.

First, remember that since this is an extracellular recording, the sign of the voltage trace
of the action potential is reversed, and the amplitude is much smaller than for intracellular
recordings (microvolts instead of millivolts). You can immediately see that there is a large
amplitude unit on the electrode. There may also be a smaller amplitude unit with a larger
trough-peak spike width. There is also some noise. It is not immediately clear how to sepa-
rate these categories, and you are looking at only 200 spikes. How do you deal with all
80,000 spikes that were recorded during an hour-long session? You could represent each
waveform as a single point, but then each point would be in a 48-dimensional space.
How do you make this analysis easier?

The solution (as you may have guessed) is to compress the data using principal compo-
nents. Then you can plot the first versus the second principal component and see whether
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the data fall into clusters. When you visualize all the spikes in a graph like the one in
Figure 14.5, it becomes clear that there are two major clusters.

Unfortunately, with so many spikes, it’s not clear how densely packed the clusters are.
You can create a 3D histogram using the function hist3 and then visualize the histogram
using the function surface. After loading the data from the companion website, use the fol-
lowing code to reproduce Figure 14.6:

wf=session(1).wf; %Load waveforms
[coeff,score]=princomp(wf); %Compute principal components
edges{1}=[-300:25:300]; %Bin for the X-axis
edges{2}=[-250:25:250]; %Bin for the Y-axis
h=hist3(score(:,1:2),edges); %Compute a 2-D histogram
s=surface(h'); %Visualize the histogram as a surface (note the apostrophe)
set(s,'XData',edges{1}) %Label the X-axis
set(s,'YData',edges{2}) %Label the Y-axis
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FIGURE 14.5 A scatterplot of the motor cortical spike waveforms projected on the first and second principal
components.
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FIGURE 14.4 A plot of 200 extracellular action potential waveforms recorded from a microelectrode array
implanted in the primary motor cortex of a macaque monkey.
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The default view is looking straight down on the surface. To make the figure prettier,
click the Rotate 3D button (its icon is a counterclockwise arrow encircling a cube). Then
click and drag on the figure to rotate it. Play with the function colormap to change the color
scheme and type help graph3D for the list of color maps. Figure 14.6 uses colormap(white).

Unfortunately, it is difficult to quickly spike sort these waveforms without a good graphical
user interface. For example, you would like to be able to select a point in PC space and see what
the corresponding waveform looks like. Youwant to be able to circle a group of points and then
see both the averagewaveformand the interspike-interval histogram. This is the sort of function-
ality provided by commercial spike sorting packages, such as Offline Sorter by Plexon, Inc. You
can implement something similar in MATLAB, but doing so is beyond the scope of this book.

In the project youwill perform in this chapter, instead of using a graphical selection tool, you
will selectwaveforms by looking at distances in PC space. Pick a point in PC 1 versus PC 2 space
that you think is at the center of a cluster. Then calculate the Euclidean distance of every other
point from this template point and pick all those that fall below a certain threshold. This is
equivalent to drawing a circle on the PC graph and picking all the points that fall within the cir-
cle. Now you can calculate any statistic you want of the sorted waveforms, such as the average
waveformor the interspike interval histogram. The function findmay be useful. For example, if
you store your Euclidean distances in dist and your distance threshold in threshold, you can find
the indices of all the waveforms meeting this threshold with ind=find(dist<threshold);.

You can use this average waveform as the basis of a template sort, a common strategy in
spike sorting. The average waveform is a template to which you compare all other wave-
forms. Calculate the mean-squared error for each waveform from this template waveform.
Then keep all waveforms whose mean squared error falls below a certain threshold.

While this procedure would be easier with a commercial spike sorter, sometimes custom
procedures in MATLAB can be useful. In the project for this chapter, you will also consider
the problem of comparing waveforms from one day to the next. Because the principal com-
ponents change depending on the data, instead of calculating the PCs of the second day,
you will project the second day’s data onto the first day’s PCs. This isn’t something that
is usually possible with spike sorting software, so understanding how to implement this
in MATLAB expands your analytical possibilities.
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FIGURE 14.6 A three-dimensional histogram showing the frequency of motor cortical spike waveforms
projected on the first (PC1) and second (PC2) principal components.
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14.3. EXERCISES

Exercise 14.1: When you computed the covariance matrix of the uncorrelated data a, why are

the off-diagonal terms nonzero? Generate several new examples of uncorrelated noise. What do

you think the average covariance matrix should be?

Exercise 14.2: Use princomp to compute the principal components of the correlated noise

you generated in b. Are they different from what you computed using the covariance matrix

method? If they are, how would this affect the transformed data?

Exercise 14.3: Use princomp to compute the principal components of uncorrelated noise.

What are the PCs? What would you expect them to be?

14.4. PROJECT

In this project, you will build your own primitive spike sorter using principal compo-
nents analysis to analyze extracellular data from recordings in the primary motor cortex
of a nonhuman primate (data courtesy of the Hatsopoulos laboratory). The spike waveform
and spike times data for this project are stored in a struct called session. You can access the
data using the following code:

wf1 = session(1).wf; %waveforms from the 1st day
wf2 = session(2).wf; %waveforms from the 2nd day
stamps1 = session(1).stamps; %time stamps from the 1st day
stamps2 = session(2).stamps; %time stamps from the 2nd day

Specifically, you are asked to do the following:

1. Apply PCA to the first day’s waveforms. What percent of variation is captured by the
first two dimensions?

2. Spike sort the first day’s waveforms using a template sort. First, select a region of
interest in 2D PC space (a circle at the heart of a cluster) by finding all points in PC
space within a certain Euclidean distance from a given point. Calculate the average
waveform of the waveforms in this region. Use this average waveform as the template
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in a template sort. Plot the template and all the sorted waveforms for each neuron
you think is present. Also plot the interspike interval histograms, which are just
histograms of the times between sorted spikes. The function diff may be useful for
this task.

3. Project the second day’s data onto the first day’s principal component’s axes. How is this
different from the second day’s data projected on its own principal components? Repeat
the sort you used for the first day’s data. How do the neurons compare? Do you think
they are the same neurons?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

cov
eig
hist3
mvnrand
normrnd
princomp
surface
transpose
repmat
find
diff
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