K-Means Clustering



K-means Clustering (DHS 10.4.3)

— K-means Clustering
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K-Means Algorithm

« K =# of clusters (given); one
“mean” per cluster sk

« Interval data o o
» &
« Initialize means (e.g. by picking k * o ®
samples at random) o ©
» lterate: ®

(1) assign each point to nearest mean
(2) move “mean” to center of its cluster.

Initialize representatives (“means”)



Convergence after another
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K-means Clustering — Details

e ComplexityisO(n*K*I1*d)

— n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes

—  Easily parallelized

— Use kd-trees or other efficient spatial data structures for
some situations

¢ Pelleg and Moore (X-means)

e Sensitivity to initial conditions

e A good clustering with smaller K can have a lower SSE than a
poor clustering with higher K



Limitations of K-means

e K-means has problems when clusters are of
differing

— Sizes
— Densities
— Non-globular shapes

e Problems with outliers
e Empty clusters



Limitations of K-means: Differing Density
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K-means (3 Clusters)



Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)



Overcoming K-means Limitations

Original Points K-means Clusters



Solutions to Initial Centroids Problem

e Multiple runs

e Cluster a sample first
o ....



