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Distance and Similarity Measures

SIMILARITY AND DISSIMILARITY MEASURE FOR QUANTITATIVE FEATURES

Measures

Forms

Comments Examples and
Applications
Metric. Invariant to any translation and rotation | Fuzzy c-means with
Minkowski (a i3 only for n=2 (Euclidean distance). Features | measures based on
distance D, ZLZ|—"-u ‘-",w| ] with large values and variances tend to | Minkowski  family
S dominate over other features. [130].
The most commonly used melric, Special case | K-means algorithm
Euclidean d -t of Minkowski metric at n=2. Tend to form | [191]
distance b, = [Z‘Pﬁu — Xy } hyperspherical clusters.
2 Special case of Minkowski metric at n=1. | Fuzzy ART [57]
City-block D, = ; X~ xﬂ' Tend to form hyperrecutangular clusters.
distance -
Sup distance D, = max|x, - Jl.ﬁ| Special case of Minkowski metric at #—» o Fuzzy c-means with
ket sup norm [39].
Invariant 1o any  nonsingular  linear | Ellipsoidal ART [13],
D =(x,-x,)S'(x, —x )} .where S is the within- transformation. S is calculated based on all | Hyperellipsoidal
Mahalancbis o | ; objects. Tend to form hyperellipsoidal clusters. | clustering  algorithm
distance ROOUp OIS Mgtex: When features are not correlated, squared | [194].
Mahalanobis distance is equivalent to squared
Euclidean  distance. May cause  some
computational burden.
d —_ —_ Mot a metric. Derived from correlation | Widely used as the
Pearson Z(-“a =% Kx; —x;) coefficient. Unable to detect the magnitude of | measure for
correlation D, =(1=1)/2, where r, =—£& differences of two variables. analyzing gene

\[ﬂ,—zﬁiuﬂ—z)

expression data [80].

%)+ (x, - %)

Not a metric. Compute the distance between an

SBEKM  (Symmetry-

Point symmetry = i object x, and a reference point x, . [, is | based K-means)
distance frbo |(x, - x,) +||(xf —X, JE B g ; ; [264].
minimized when a symmetric patlern exists.
x'x Independent of wvector length. Invariant to | The most commonly
Cosine similarity S,; =o0sa = Il" || xl I rotation, but not to linear transformations. used measure in
il document clustering

[261].




Similarity Measurements
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Similarity Measurements

= Pearson Correlation: Trend
Similarity
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Similarity Measurements

= Euclidean Distance
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Similarity Measurements

= Euclidean Distance: Absolute difference
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b =0.5a
c=d-02
d(a,b)=2.8025
d(a,c)=1.5875
d(b,3)=3.2211



Similarity Measurements

s Cosine Correlation
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Similarity Measurements

s Cosine Correlation: Trend + Mean
Distance _
b =0.5a

RIS Y, cosme (a b) o 1
" o e T . cosme (Zi E) 0.9622

| T Crne(8,6)=0.9622




Similarity Measurements

1k RS B ; Z; — Oosc_i
05} ............ E _ C_i B 02
pearson(a b) o 1 d(é_i,b) = 28025 cosme(a b) T 1
Cearson(@,C) =1 d(a,c)=1.5875 C... (d,6)=0.9622

Coroarson(0,6) =1 d(b,6)=3.2211 C.. (b,&)=0.9622



Similarity Measurements
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Croson(@0)==0.1175  d(d@,b)=0.0279  C,p;,(G@,b)=0.7544
C earson(d,€) = 0.1244 d(a,c)=0.0255 C... (dc)=0.8092
(b,¢)=0.1779 d(b,¢)=0.0236 C.oine(b,C) = 0.844
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