Unsupervised ML (DHS Ch. 10)

Outline

® Similarity Measures
® Chain Method of Clustering
® C(Clustering Criterion Functions
B Sum of Squared Error Criterion
B Scattering Criteria
® Trace criterion
® Determinant criterion
® Another possible criterion

B Optimization

® K-means Clustering

® Component Analysis: PCA, ICA*

*special topics



Unsupervised ML (DHS 10.1)

Don’t know which class each prototype belongs to.

Why?
1. Collection and labeling of prototypes is often expensive and time-consuming
2. Feature characteristics may not be stationary in time
It may be desirable to study structures of the data. New Information or discovery of
subclasses may alter the decision
4. Perform exploratory data analysis
Classification in the reverse direction

Ex: Classifying unknown targets

1. Clustering
A. Similarity Based
- Similarities Measures
- Chain Method of Clustering

B. Criterion Functions Based
- Sum of squared error
- Min. variance

Scatter matrices

Optimization
C. K-means Clustering
2. Component Analysis

A. PCA
B. ICA



A. Similarity Measures (DHS 10.6.1)

Figure 10.6 shows four different data sets. All have the same mean and covariance matrix, yet

their distributions are different. => unmixing needed

FIGURE 10.6. These four data sets have identical statistics up to second-order—that
is, the same mean p and covariance X. In such cases it is important to include in the
model more parameters to represent the structure more completely. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.

Major Questions

1. How to measure similarity between samples?

2. How to evaluate partitioning into clusters?



Similarity
Samples: xi, X2, ... , X

Ex: Distance measures

N
d(xi,x) = { X [x; (n)—x; (m)]* }1? (Euclidean distance)
n=1
N
d(xi,xj) = Z‘xi (n)—x, (n)‘ (Manhattan distance or absolute distance)
n=1

Clustering example: compare distance to a threshold, d,

Figure 10.7: Effect of d, as the distance threshold for clustering.
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FIGURE 10.7. The distance threshold affects the number and size of clusters in similarity based clustering
methods. For three different values of distance do, lines are drawn between points closer than do—the smaller
the value of d,, the smaller and more numerous the clusters. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



Scaling
Scaling problems can often be avoided using normalized distance measures, e.g. Mahalanobis

distance.

Figure 10.8. Effect of scaling for clustering.
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FIGURE 10.8. Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left; points in
one cluster are shown in red, while the others are shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (as shown at the right). Alternatively, if the vertical axis is shrunk by
a factor of 0.5 and the horizontal axis is expanded by a factor of 2.0, smaller more nu-
merous clusters result (shown at the bottom). In both these scaled cases, the assignment
of points to clusters differ from that in the original space. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.



Figure 10.9. Effect of normalization
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FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattemn Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Other Similarity Measures

1) Angular Similarity

Introduce a nonmetric similarity function S to compare x; and x;
Similarity, S(xi,xj)= xi'xj / |xi| |[xj|| (normalized inner product, cosine of the angle between x;
and x;)

Useful if angle between two vectors is meaningful.

i1) Binary Similarity

For binary features

S is a measure of the relative possession of common attributes
S(Xi,Xj)= XiTXj / XiTXH- XjTXj — XiTXj

Xi'xj=No. of shared attributes

S=Percentage of attributes that are shared.



Chain Method of Clustering

1. First sample assigned to Cluster #1

2. Compute distance d of the next sample to the previous sample and compare to d, (a
threshold pre-specified). If d<d, assign sample to the same (first) cluster; otherwise
form a new cluster for the sample.

3. Compute distance d of the next sample to all existing clusters. Find min. distance dminif
dmin<do, assign to corresponding cluster. Otherwise form a new cluster. (1-pass

algorithm)

Distance d to cluster = distance to the first sample of cluster.

or variation = distance to the sample mean of cluster.
However, it is (1) sensitive to d, and (2) order of samples.
Variations:

- Could perform multiple passes, each with different d,

- Could use cluster means for d

So far, how to measure “similarity,” now the criterion functions.



B. Clustering Criterion Functions and Classification (DHS 10.7)

A set z of J samples xi, ..., Xj.

Divide z into K subsets zi, z», .. z.
Define a criterion function to measure clustering quality of any partition of the J samples into K

subsets. Find extremum (min. or max.) of the criterion function.

1. Sum of Squared Error Criterion (DHS 10.7.1)
Simplest and most widely used.
Let J; = No. of samples in z;

m; = mean of samples in z;

miZ(I/Ji) Z X

X;€z;

Sum of Squared Error:

K
Je= D > [Ixj-ml?
i=1

X/€Zi

Smallest J. gives the minimum variance clustering. So it is good for the clusters that for

compact clouds and well separated from one another.

Good for the clusters from compact clouds that are rather well-separated from one another

But look at Figure 10.10

Jo = large

J. = small

FIGURE 10.10. When two natural groupings have very different numbers of points, the
clusters minimizing a sum-squared-error criterion /e of Eq. 54 may not reveal the true
underlying structure. Here the criterion is smaller for the two clusters at the bottom than
for the more natural clustering at the top. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



2. Minimum-Variance Criteria (DHS 10.7.2)
Can re-write J. as
K
J=(172) > Jis,
i=1

where 5, = (1/J?) Z Z |Ixj-xi||*, the average squared distance between any two points in

X;€z; X/€z

the i-th cluster
Similarly, 5, could be replaced by

Different choices:

5 =102 > s(xg, %)

X;€z; X/€z

where s=a similarity function.

or

5, =  min [s(x},x)]

X;,X €z;

Objective: find extremum of criterion function

3. Scattering Criteria (DHS 10.7.3)

Form matrices Sw and Sp to measure scattering of samples. Form a criterion function from Sw

and/or Sg.
Mean of i-th cluster: mi= (1) > X
K
Total mean vector: m=(1/J) 2 x; = (1/]) z Jim
i=1
Scatter matrix for i-th cluster: Si= > [x-mi] [x-mi]"
K
Within-class scatter matrix: Sw= z Si,  NxN matrix
i=1
K
Between-cluster scatter matrix: Sp= z Ji[mi-m] [mi-m]T, NxN matrix
i=1
Total scatter matrix: St= Y [x-m] [x-m]"

Possible pitfall: if no. of clusters = no. of samples, Si=Sw=0.



Table 10.1: Mean vectors and scatter matrices used in clustering criteria.

Depend on
cluster
center?
Yes | No
Mean vector for . m; = LY Z X (54)
the ith cluster =
Total m—IZJc—li m (55)
otal mean vector X = = 29
D i=1
Scatter matrix for v .
X y; = —m; —1m; 56
the ith cluster o Z (X~ =) (56)
xED;
«
Within-cluster .
; X Sw = S; 57
scatter matrix . ; : (57)
Between-cluster i < »
scatter matrix S = Z n;(m; —m)(m; —m)" (58)
i=1
- o = t [
Total scatter matrix X St = Z (x —m)(x —m) (59)
xeD

Can show
St= Sw+Ss

1. Sris independent of clustering or partition of data.

2. As Swincreases, Sg decreases.
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Need a scalar measure of Sg or Sw to maximize or minimize

1) Option 1: Trace Criterion

K K
Tr{Sw}= Y Tr{Si}= > 3 |x-mi?
i=1

i=1 x;€z;

Tr{Sw}=J=sum of squared errors.
Tr{St}=Tr{Sw}+ Tr{Ss}
Min. Tr{Sw} & Max. Tr{Sg}

K
Tr{Se}= > Jimi-m|’

i=l1

2) Option 2: Determinant Criterion

K
Ja=ISwI=2 ISi

i=1

ISg| could maximize this

SB=§ Ji[mi-m] [mi-m]*

i=1

Exception: singular if K<N, .".|Sg| not useful, poor choice

8= > [xmi] [xymi]"

Max. Rank of S=Ji-1
K
sw=3 s,
i=1
K
Max. rank of Swis () J)-K=J-K

i=l1

If N>J-K, Sw is singular

3) Option 3: Another possibility (Invariant Criteria)

n=1

where A, = n-th eigenvalue of Sw!Sp

11

N
J=Tr{Sw!Ss}= Z An (since the trace of a matrix is the sum of its eigenvalues)



Example 3: Clustering criteria

We can gain some intuition by considering these criteria applied to the following
data set.

sample r xr2 sample I )]
1 -1.82 ] 0.24 11 041 | 091
2 -0.38 | -0.39 12 1.70 | 0.48
3 -0.13 | 0.16 13 092 | -0.49
4 -1.17 | 0.44 14 241 | 0.32
5 -0.92 | 0.16 15 1.48 | -0.23
6 -1.69 | -0.01 16 -0.34 | 1.88
i 0.33 | -0.17 17 0831 0.23
8 -0.71 | -0.21 18 0.62 | 081
9 1.27 | -0.39 19 -1.42 | -0.51
10 -0.16 | -0.23 20 0.67 | -0.55

All of the clusterings seem reasonable, and there is no strong argument to favor one
over the others. For the case ¢ = 2, the clusters minimizing the J, indeed tend to favor
clusters of roughly equal numbers of points, as illustrated in Fig. 10.9; in contrast,
J; favors one large and one fairly small cluster. Since the full data set happens to
be spread horizontally more than vertically, the eigenvalue in the horizontal direction
is greater than that in the vertical direction. As such, the clusters are “stretched”
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The clusters found by minimizing a criterion depends upon the criterion function
as well as the assumed number of clusters. The sum-of-squared-error criterion J,
(Eq. 49), the determinant criterion J; (Eq. 63) and the more subtle trace criterion
Js (Eq. 65) were applied to the 20 points in the table with the assumption of ¢ = 2
and ¢ = 3 clusters. (Each point in the table is shown, with bounding boxes defined
by —1.8 <z <25and —0.6 <y <1.9.,)

horizontally somewhat. In general, the differences between the cluster criteria become
less pronounced for large numbers of clusters. For the ¢ = 3 case, for instance, the
clusters depend only mildly upon the cluster criterion — indeed, two of the clusterings
are identical.
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