Parameter Estimation (DHS Ch. 3)
Not all statistics known

Two techniques for estimating p(x|S;), assumed not known a priori

1. Parametric — Functional form of p(x|Si) is known or assumed (Table 3.1). Then estimate
parameters.

Table 3.1: Common Exponential Distributions and their Sufficient Statistics.
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Example: p(x|Si))=N(x,m;,Z;)

Estimate m; and X from training samples

Two approaches: (1) Maximum likelihood (ML) estimation and (2) Maximum a Posterior
(MAP) estimation (i.e., Bayesian estimation)

2. Nonparametric: estimate the density functions themselves.



1) Parametric Models and Estimation

Preliminaries (DHS 3.1)

- Previously, we designed an optimal classifier if the prior probabilities and the class-conditional
densities (i.e., likelihood) are known.

- However, we rarely have this kind of complete knowledge about the probabilistic structure of
the problems

- Now, use the samples to estimate the unknown probabilities and probability densities

- Estimation of the prior probabilities in supervised classification is not a serious problem, but
not the class-conditional densities

- At least, assume probability density functions with unknown parameters

- Two common and reasonable procedures: (1) Maximum Likelihood (ML) estimation and (2)
MAP Bayes estimation

- ML views the parameters as quantities as fixed values, but unknown (Fig. 3.1)

- MAP Bayesian views the parameters as random variables (Fig. 3.2)

- Bayesian learning: observing additional samples sharpens the posteriori densities, causing it to
peak near the true values of the parameters (Fig. 3.2)

Maximum-Likelihood vs. Bayesian Maximum A Posteriori (DHS 3.2.1)

Key concepts
- IID = independent and identically distributed random variables
- Likelihood = p(D|0) (See Fig. 3.1)
- Log-Likelihood /(6)=In{p(D|6)}  (See Fig. 3.1)
- Maximum Likelihood (See Fig. 3.1)
- Maximum A Posterior and Mode (See right below & Fig. 3.2))
- Fig. 3.1 vs. Fig. 3.2

~~~~~ MAP: 5.45
""" Mean: 5.34

Density

% MAP estimation
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Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|#) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked #; it also maximizes the logarithm
of the likelihood — 1.e., the log-likelihood [(#), shown at the bottom. Note especially
that the likelihood lies in a different space from p( :|0}. and the two can have different
functional forms.

Bayesian Learning of Parameters (Fig. 3.2)

Figure 3.2: Bayesian learning of the mean of normal distributions in one and two di-
mensions. The posterior distribution estimates are labelled by the number of training
samples used in the estimation.




Maximum Likelihood Estimate (DHS 3.2.1)

Estimate é (8 = fixed but unknown)

The maximum likelihood (ML) estimate 6 of 0 is that value 6 which maximizes p(z|9).

Can find this by maximizing In(p(z|0)) w.r.t. 6.
The ML estimate is the est. that maximizes the probability of obtaining the samples actually observed.

How to Maximize Likelihood
Maximize p(z|0) w.r.t ©.
Gradient w.r.t. : V,p(z|6)]

Or V,Inp(z|6) lo=b(=0
V,=[0/06,,0/08,,..]

0=0(z) 0

P10 =TTrx 10

J samples, assumed independent.

Inp(zl0)=> Inp(x{0)

Vylln p(z]0)] = Z Voiln p(x;0); =0

Solution é = maximum likelihood.

ML Example 1 (DHS 3.2.2)
Multivariate normal, unknown mean, known variance. N(x;j,m,X)

P10 =TTr(x 10

J
Inp(Z0)=  Inp(x0)
j=1
(Drop vector and matrix notations)
For normal density:
In p(xjim) = -1/2 In{(27)|Z|} — 1/2 (xj-m) ="' (xj-m)

V,u[ln p(x; [m)] =27 (x; —m)

V[ p(z | m), o= SE7 (x, i) =0

Jj=1

J
m=1/J z X; The sample mean estimate is the ML estimate.



ML Example 2 (DHS 3.2.3)
Univariate normal, unknown mean, unknown variance.

0=[01, 0,]= [m, c°]
In[p(xj|0)]=-1/2 In[270,]-1/202(x;-01)*

Vylln p(x; [O)]=[1/0,(x; —0,),-1/20, +1/205 (x; —6,)°]
Vollnp(z|0)],_; =0

Univariate normal, unknown mean, unknown variance.

Univariate case

- ~ 1
0, =m= 7ij (sample mean)

b, -6 - %Z(X/‘ _ ) (sample variance)

Note: &2 is a biased estimate.

Multivariate normal, unknown mean, known variance. N(x;,m,X)

Multivariate case yields:

Note: i is a biased estimate.

X How to make variance unbiased???




Maximum A Posteriori (MAP) Estimate

MAXIMUM A We note in passing that a related class of estimators mazximum a posteriori or

POSTERIORI ~ MAP estimators find the value of @ that maximizes [(0)p(@). Thus a maximum
likelihood estimator is a MAP estimator for the uniform or “flat” prior. As such,

MODE a MAP estimator finds the peak, or mode of a posterior density. The drawback of
MAP estimators is that if we choose some arbitrary nonlinear transformation of the
parameter space (e.g., an overall rotation), the density will change, and our MAP
solution need no longer be appropriate (Sec. 3.5.2).

*MAP is beyond the scope of this class

2) Nonparametric Models and Estimation
Suppose you don’t know the form of the densities
Try to estimate p(x|Sx) (=likelihood) or P(Sk[x) (= a posteriori)
=>» Estimation of probability density functions.

Concept

Bin locations set by samples, bin shape is a parameter.

Each sample x; gives rise to a window function centered about x;. Estimate p(x) by summing over
window functions.

Parzen Window Estimation (DHS 4.3)

Define a window function A(u)=A(X-Xi)

Estimate p(x). Given a sample x=X;, p(xi) is nonzero, and if p(x) is continuous, p(x) is nonzero for x
close to xi

Use window function A(x-x;) centered at xi. A should be non-increasing.

Estimate of p(x) is

J
pix) =14 D Ax-x) (Parzen window estimate)

i=1
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very simplified illustration of how
the window width affects the
density estimation

too big
appropriate

too small

woocx = samples

Check Matlab Handouts for density function estimation



