
Parameter Estimation (DHS Ch. 3) 
Not all statistics known  
 
Two techniques for estimating p(x|Si), assumed not known a priori 
 

1. Parametric – Functional form of p(x|Si) is known or assumed (Table 3.1). Then estimate 
parameters.  

 
Example: p(x|Si)=N(x,mi,i) 
Estimate mi and i from training samples 
Two approaches: (1) Maximum likelihood (ML) estimation and (2) Maximum a Posterior 
(MAP) estimation (i.e., Bayesian estimation) 
 

2. Nonparametric: estimate the density functions themselves.  
=========================================================== 

 

 

 

 



1) Parametric Models and Estimation 
 
 
Preliminaries (DHS 3.1) 
 

- Previously, we designed an optimal classifier if the prior probabilities and the class-conditional 
densities (i.e., likelihood) are known. 

- However, we rarely have this kind of complete knowledge about the probabilistic structure of 
the problems 

- Now, use the samples to estimate the unknown probabilities and probability densities 
- Estimation of the prior probabilities in supervised classification is not a serious problem, but 

not the class-conditional densities 
- At least, assume probability density functions with unknown parameters 
- Two common and reasonable procedures: (1) Maximum Likelihood (ML) estimation and (2) 

MAP Bayes estimation 
- ML views the parameters as quantities as fixed values, but unknown (Fig. 3.1) 
- MAP Bayesian views the parameters as random variables (Fig. 3.2) 
- Bayesian learning: observing additional samples sharpens the posteriori densities, causing it to 

peak near the true values of the parameters (Fig. 3.2) 
 
 
Maximum-Likelihood vs. Bayesian Maximum A Posteriori (DHS 3.2.1) 
 
Key concepts 

- IID = independent and identically distributed random variables 
- Likelihood = p(D|θ)    (See Fig. 3.1) 
- Log-Likelihood l(θ)= ln{p(D|θ)}   (See Fig. 3.1) 
- Maximum Likelihood (See Fig. 3.1)  
- Maximum A Posterior and Mode (See right below & Fig. 3.2)) 
- Fig. 3.1 vs. Fig. 3.2 

 
 
 

MAP estimation 
 
 



 
 
 

Bayesian Learning of Parameters (Fig. 3.2) 

 
 
 
 

 

 

 

 

 



Maximum Likelihood Estimate (DHS 3.2.1) 
 

Estimate ̂  ( = fixed but unknown) 

The maximum likelihood (ML) estimate  ̂  of  is that value ̂  which maximizes p(z|). 

Can find this by maximizing ln(p(z|)) w.r.t. . 
 
The ML estimate is the est. that maximizes the probability of obtaining the samples actually observed. 
 
How to Maximize Likelihood 

Maximize p(z|) w.r.t . 
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Solution ̂  = maximum likelihood. 

 
ML Example 1 (DHS 3.2.2) 
Multivariate normal, unknown mean, known variance. N(xj,m,) 
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(Drop vector and matrix notations) 
For normal density: 
ln p(xj|m) = -1/2 ln{(2)J||} – 1/2 (xj-m)T-1(xj-m) 
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xj              The sample mean estimate is the ML estimate. 

 
 
 



 
ML Example 2 (DHS 3.2.3) 
Univariate normal, unknown mean, unknown variance. 
 
=[1, 2]= [m, 2] 
 
ln[p(xj|)]=-1/2 ln[22]-1/22(xj-1)2 
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Univariate normal, unknown mean, unknown variance. 
 
Univariate case 
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Note: 2̂  is a biased estimate. 
 

 
 
 
Multivariate normal, unknown mean, known variance. N(xj,m,) 
 
Multivariate case yields: 
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Note: ̂  is a biased estimate. 
 
 
 

 
※ How to make variance unbiased??? 
 

 

 

 

 

 

 



 

Maximum A Posteriori (MAP) Estimate 
 

 
*MAP is beyond the scope of this class 
 
 

 

2) Nonparametric Models and Estimation 
Suppose you don’t know the form of the densities 
Try to estimate p(x|Sk) (=likelihood) or P(Sk|x) (= a posteriori) 
 Estimation of probability density functions. 

 

Concept 
 

Bin locations set by samples, bin shape is a parameter. 
 
 
 
 
 
 
 
 
 
 
 
Each sample xi gives rise to a window function centered about xi. Estimate p(x) by summing over 
window functions. 
 

Parzen Window Estimation (DHS 4.3) 
Define a window function (u)=(x-xi) 
Estimate p(x). Given a sample x=xi, p(xi) is nonzero, and if p(x) is continuous, p(x) is nonzero for x 
close to xi 
 
Use window function (x-xi) centered at xi.  should be non-increasing. 
 
Estimate of p(x) is  
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(x-xi)             (Parzen window estimate) 



 
 

 
 

 

 
Check Matlab Handouts for density function estimation  
 
 


