Bayes Minimum Error Classifier — 2 Classes
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Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region R is not simply connected.

Likelihood ratio

Ix) = pPx[S) > P(S,) _
p(x|82) < P(S))

Log likelihood ratio h(x)= -In[ 1(x) ]

>
h(x) = -InT
<



Bayes Minimum Error Classifier — Multiple Classes

Bayes Minimum Error — Multiple Classes

P(SiIx) > P(SiIx) for all j#i => x € S;
pxISHP(S) > p(xI SHP(S)) for all j#i => x € S;

For Multiclass: if p(x|SHP(S) > p(x| SHP(S)) V=i then xeS;

A Set of Discriminant functions: gi(x) = p(x|SHP(S)




Bayes Classifiers with Normal Density Functions

Again, use a set of discriminant functions gi(x)

i.e., gi(x) > gi(x) for all j#i.

Express gi(x) in terms of probabilites

gi(x)=p(Sil x)

gi(x)=px|SHP(S)

gi(x)=In [p(x|S)] + In [P(S)]

Now Let’s consider Gaussian (normal) density functions



Normal Density

- So far, general forms of density functions are considered

- Most widely studied density functions are the multivariate normal or

Gaussian density

- Why? analytical tractability, most appropriate model

Univariate Density
1 I x—u,
p(x)= exp[—— )]
\2ro 2 o

p=expected value of x, average or mean

o=standard deviation

: ‘ X
u-26 u-o u u+oc u+20
7: A univariate normal distribution has roughly 95% of its area in the range

Figure 2.
< 20, as shown. The peak of the distribution has value p(u) = 1/v/270.

|x — p

Multivariate Density

p(x)= Wexp[—%@ —) TN (x- ﬂ)}

u=mean vector

> =covariance matrix



Whitening Transformation

Transformation of an arbitrary multivariate normal distribution into a spherical one

That is one having a covariance matrix proportional to the identity matrix, I
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Figure 2.8: The action of a linear transformation on the feature space will convert an
arbitrary normal distribution into another normal distribution. One transformation,
A. takes the source distribution into distribution N(Afpu, A A). Another linear
transformation — a projection P onto line a — leads to N (g, 2) measured along a.
While the transtorms yield distributions in a different space, we show them super-
imposed on the original ry — x9 space. A whitening transform leads to a circularly
symmetric Gaussian, here shown displaced.



Mahalanobis Distance = du

dv?(x,m)=(x-m)" ¥ (x-m)
1s the squared Mahalanobis distance from x to p

The contours of constant density are hyperellipsoids of constant Mahalanobis distance

to p in Fig. 2.9
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Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean p. The red ellipses show lines of equal probability density of the Gaussian.
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Discriminant Functions with Normal Density

The minimum error rate classification can be done using the discriminant functions:
gi(x)=In [p(x|S)] + In [P(S)]
If p(x|SH)=N(w,>.)

g0 == (= )" (- ) - S 27 = Tl I P(S)

Let’s examine this discrimination function and resulting classification for three special

cases.

Case 1: Same o

02

If Y=6°1=

>=(1/6%1
dv’(x,m)=(1/6%)(x-m) " (x-m)= (1/6?) dp*(x,m)

dg: Euclidean distance

2
g:(x) =—%+m1’<&)

Since [x-p[" = (x-p)" x-n))

2,() =—212 [ x - 207 x4 pl g, 1+ In P(S,) = WI X+,
O

pip; +InP(S;)

where !
Wi=——7%Ri» Wy =—
c? 2062

. . . 2., . .
This equation shows that squared distance ||x—,ui|| is normalized by the variance and

offset by InP(S;). That is if x is equally near two different mean vectors, the optimal

decision favors the a priori more likely category.



Equal Covariances
- Hyperspheres
- Radius scaled by o

Figure 2.10: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d — 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-; and 3-dimensional examples, we indicate p(x|w;) and the
boundaries for the case P(wi) = P(w2). In the 3-dimensional case, the grid plane
separates Rq from Ra.



Role of the Priors
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Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.



Case 2: Different o

If 3= o2

1/ oy
T N
dvi(x,m)= (x-m)"Y (x-m) =Z (1/6:%)(x;—my)?
i=1

(i term of dg is scaled by o)

For the 2-D Case

dv’=(x1-m)?¥/o11? + (x2—m2)?/c22°

g,() = —%(x—u,-)T S (- ) +In P(S,)

- To classify a feature vector x, measure the squared Mahalanobis distance
from x to each of the mean vectors, and assign x to the category of the
nearest mean.

- Classifier becomes linear and decision boundaries become hyperplanes.
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Probability Densities and Decision Regions for Equal, but Asymmetric Normal Distribtions
- Hyperellipsoids
- Axes parallel to coordinate axes.

- Note the effect of priors.
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Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.
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But, no simple decision regions for Gaussians with unequal variance
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Figure 2.13: Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance.
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Case 3: If Yli=general or arbitrary

If the covariance matrices are different for each category, the resulting discriminant

functions are inherently quadratic
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dv*(x,m)= (x-m)'¥ ' (x-m)

2-D Case

2 2
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Arbitrary Gaussian distributions with decision boundaries

Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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Arbitrary 3-D Gaussian distributions with decision boundaries
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Figure 2.15: Arbitrary three-dimensional Gaussian distributions yield Bayes decision
boundaries that are two-dimensional hyperquadrics. There are even degenerate cases
in which the decision boundary is a line.
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Decision regions for four normal distributions

Figure 2.16: The decision regions for four normal distributions. Even with such a low
number of categories, the shapes of the boundary regions can be rather complex.
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