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Bayes Minimum Error Classifier – 2 Classes 
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Log likelihood ratio h(x)= -ln[ l(x) ] 
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Bayes Minimum Error Classifier - Multiple Classes 

 

Bayes Minimum Error – Multiple Classes 

 

P(Si|x) > P(Sj|x) for all ji => x  Si 

p(x|Si)P(Si) > p(x|Sj)P(Sj) for all ji => x  Si 

 

 

For Multiclass: if p(x|Si)P(Si) > p(x|Sj)P(Sj) ji then xSi 

 

 

A Set of Discriminant functions: gi(x) = p(x|Si)P(Si) 
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Bayes Classifiers with Normal Density Functions 

 

Again, use a set of discriminant functions gi(x) 

i.e., gi(x) > gj(x) for all j≠i. 

 

Express gi(x) in terms of probabilites  

 

gi(x)=p(Si|x) 

 

gi(x)=p(x|Si)P(Si) 

 

gi(x)=ln [p(x|Si)] + ln [P(Si)] 

 

Now Let’s consider Gaussian (normal) density functions  
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Normal Density  

- So far, general forms of density functions are considered 

- Most widely studied density functions are the multivariate normal or 

Gaussian density  

- Why? analytical tractability, most appropriate model 

 

Univariate Density  
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μ=expected value of x, average or mean 

σ=standard deviation 

 

 

Multivariate Density  
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μ=mean vector 

 =covariance matrix 
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Whitening Transformation 

Transformation of an arbitrary multivariate normal distribution into a spherical one 

That is one having a covariance matrix proportional to the identity matrix, I 
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Mahalanobis Distance = dM  

 

dM
2(x,m)=(x-m)T-1(x-m) 

is the squared Mahalanobis distance from x to μ 

The contours of constant density are hyperellipsoids of constant Mahalanobis distance 

to μ in Fig. 2.9 
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Discriminant Functions with Normal Density  

The minimum error rate classification can be done using the discriminant functions: 

gi(x)=ln [p(x|Si)] + ln [P(Si)] 

If p(x|Si)=N(μi,∑i) 
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Let’s examine this discrimination function and resulting classification for three special 

cases.  

 

 

Case 1: Same   
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-1=(1/2)I 

dM
2(x,m)=(1/2)(x-m)T(x-m)= (1/2) dE

2(x,m) 

dE: Euclidean distance 
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This equation shows that squared distance 
2

ix  is normalized by the variance and 

offset by lnP(Si). That is if x is equally near two different mean vectors, the optimal 

decision favors the a priori more likely category. 
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Equal Covariances 

- Hyperspheres 

- Radius scaled by  
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Role of the Priors 
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Case 2: Different   

 

If =
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dM
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For the 2-D Case 

dM
2=(x1-m1)
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- To classify a feature vector x, measure the squared Mahalanobis distance 

from x to each of the mean vectors, and assign x to the category of the 

nearest mean. 

- Classifier becomes linear and decision boundaries become hyperplanes. 
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Probability Densities and Decision Regions for Equal, but Asymmetric Normal Distribtions 

- Hyperellipsoids 

- Axes parallel to coordinate axes. 

- Note the effect of priors. 
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But, no simple decision regions for Gaussians with unequal variance 
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Case 3: If i=general or arbitrary  

 

If the covariance matrices are different for each category, the resulting discriminant 

functions are inherently quadratic 
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dM
2(x,m)= (x-m)T-1(x-m)  

 

2-D Case 
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Arbitrary Gaussian distributions with decision boundaries 
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Arbitrary 3-D Gaussian distributions with decision boundaries 
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Decision regions for four normal distributions 

 

 

 

 

 

 


