Statistical Classification

- Main Assumption: The prototypes (and unknown) are drawn from an underlying statistical

distribution.

- Bayes Decision Theory: Assumes all statistics are known.

- Parametric: Probability density functions (p.d.f's) are known or assumed. Parameters are

unknown.

- Nonparametric: Estimate p.d.f's or use other statistical techniques.

Bayes Decision Theory

- Based on quantifying the tradeoffs between various decisions using probability and
the costs that accompany such decisions

- All of the relevant probability values are known.
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Introductory Example

Aerial images
Classify — land, water
Si=land

S,=water

-> Feature Extractor -> Classifier ->
A priori probabilities:

p(S$41)=0.3

p(S,)=0.7

Prior probabilities reflect our prior knowledge of how likely we are to get S or S,.

If unknown,

Crude estimates of probabilities:

M
P(S;)=——*

2 My
k=1

Decision Rule

- Decide S1 iff P(S1)>P(Sz)

— This rule makes sense if we are to judge just one fish, but not for many fish

Features

- Let's use feature information to improve the classifier

- X1 ¢ lpige

- X, oc T="feature regularity”

- x=feature vector

- p(x1|S2)=p(lbiwe |water)=class-conditional p.d.f.

- That is the probability density function for x given that the state of nature is S;

- p(x|Si)=class-conditional p.d.f. (or state-conditional p.d.f) also likelihood of S; w.rt. x

- Bayes Decision Theory: assume p(x|S;) are known and that P(S;) are known.



Review: Bayes Statistics and Probability

p(x): probability density function (p.d.f) for x

p(y): p.d.f. fory

Joint p.d.f.  pxy)=pX)p(y) if random variable x and y are statistically independent.

If x and y are dependent (i.e., y gives a better estimate of x), the conditional probability

of x given vy,

p(xly) = p(xy)/p(y)

if x and y are independent, then p(x|y)=p(x), therefore p(x,y)=pXx)p(y).

Ply[X¥)=px,y)/pX), p(xy)=pyX)p(X)

then p(x|ly)=[p(y[x)p(x)]1/p(y) it is called Bayes formula.

Let's rewrite this,

P(SIX)=[p(x|S)p($)]/p(X)

where

p(x|S) is the likelihood of S with respect to x.
p(s) is the prior density

p(x) is called evident, a scalar scaling factor.

p(S|x) is the posterior probability (i.e., probability of being S given the feature x)



Bayes Formula

p(S1|x)=?=a posteriori probability

p(x| S )P(Sy) k=12
pxy

P(Sy | x)=
- In English
Posterior = (Likelihood x Prior) / Evidence

Likelihood =>  p(x|Sk)

Prior => p(Sy)
2

Evidence => p(x) = ZP(J_C| S P(S,)
k=1

- Bayes formula converts the prior probability p(Sy) to a posteriori probability (or
posterior) p(Sy/x): the probability of the state of nature being Sy given that feature

value x has been measured.

- p(x|Sy)=the likelihood of Sy with respect to x, a term to indicate the category Sy for

which p(x|Sy) is large is more likely to be the true category.

- The posterior depends on the likelihood and the prior as the product.



Bayes Decision Rule for Minimum Error (2-class)

P(S1lX) > p(Salx) => xe$4

p(Salx) > p(Si|x) => xeS;

Use Bayes Theorem

P(S, | x)= p(x| S )P(Sy)
p(x)

K
p(x) =D p(x|SP(S,)

k=1

Bayes decision rule for minimum error (2-class)

P(X|S1)P(S1) > p(X|S)p(S2) => x € Sy
P(X|S1P(S1) < p(X|SP(S2) => x € S,

Rearrange:

p(x|S)) N P(S,) => xeS,
p(x|S,) P(S) N

< => XeS$;

Likelihood ratio, 1(x) = 251

p(x|S,)
PS,) =T = threshold value
P(S))




Log Likelihood ratio

he)=-In[1x) ] = In [ p(x[S2) = In [ p(x|S1) ] < In [ P(S1)/ P(S2) ] => x € S;

Error probabilities

Def. of Prob. Error => Pezp(S1)jr2 p(X|S1)dx + p(Sz)_[ﬂ p(x|S2)dx

Minimize Pe

Integrands > 0 always

= assign x to S; when p(x|S2)P(S2) < p(x|S1)P(S1)

Bayes minimum error classifier

12 p(S1[x)>P(Sz|x)
2 p(S1|x) <P(Sz|x)



