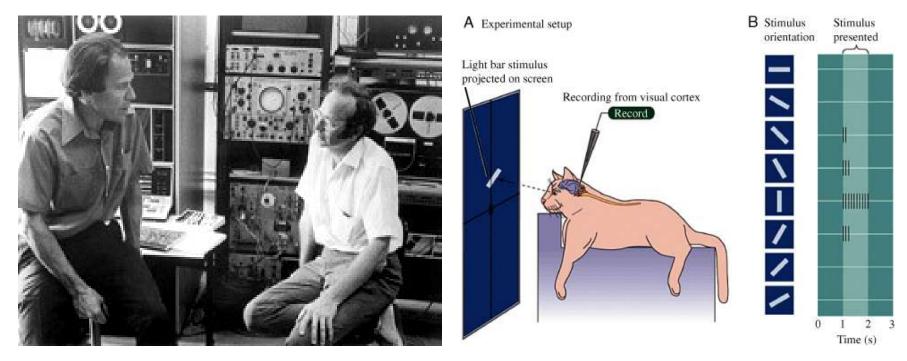
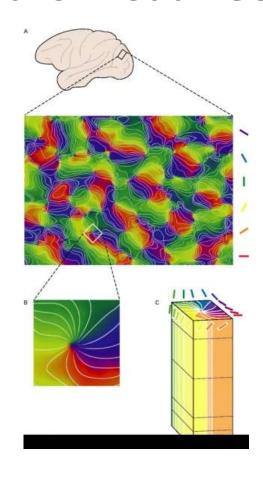
Convolutional Neural Networks

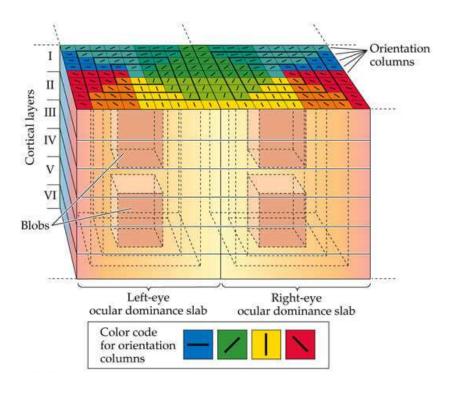
Hubel & Wiesel (1962)



Nobel Prize in Medicine and Physiology (1981) for their discoveries concerning information processing in the visual system

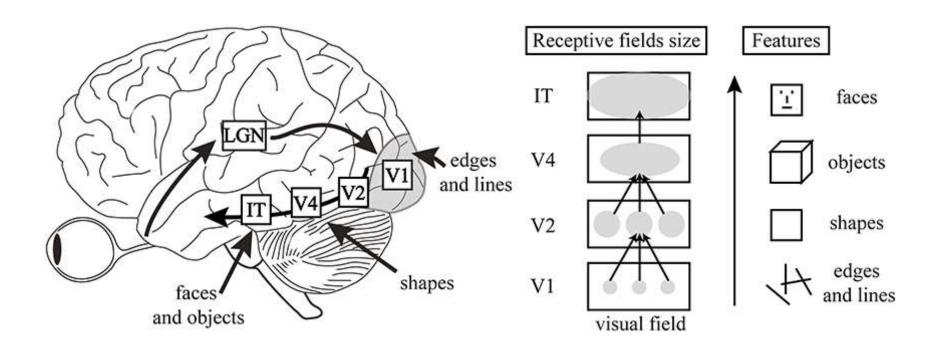
Orientation & Ocular Dominance Columns of the Visual Cortex



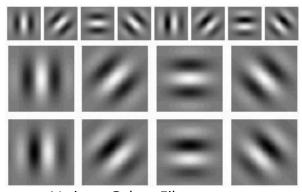


Topographic organization of oriented edge detectors in V1 -- neighboring regions of neurons have similar orientation tuning, as shown in this colorized map where different colors indicate orientation preference as shown in panel C. Panel B shows how a full 360 degree loop of orientations nucleate around a central point -- these are known as pinwheel structures.

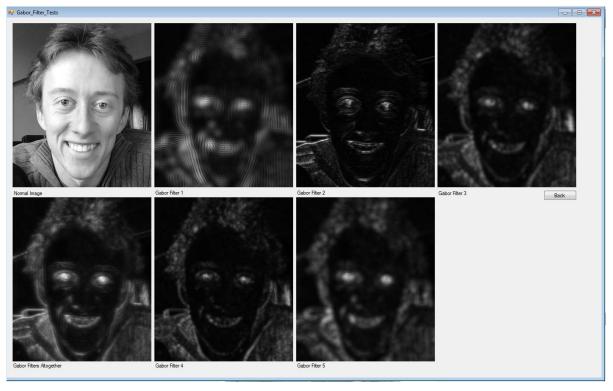
Visual Processing of The Brain



Gabor Filtering at the Visual Cortex (V1)

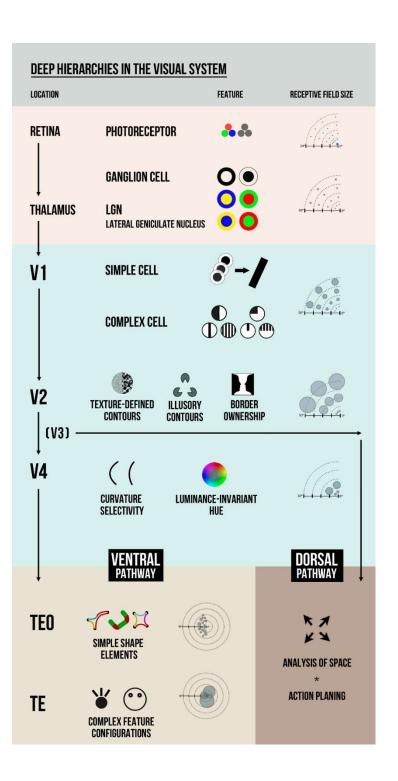


• Various Gabor Filters

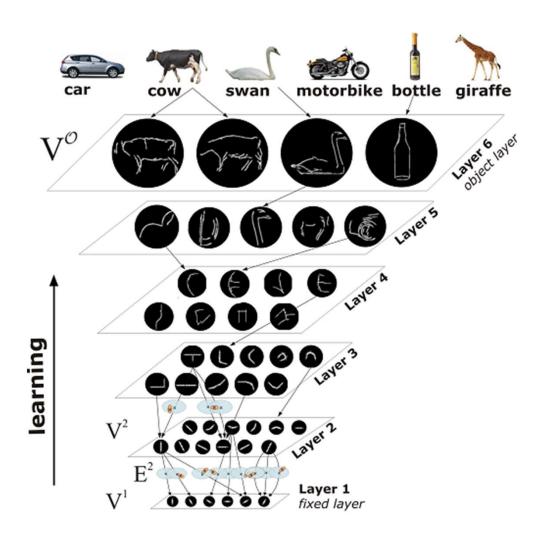


Original and filtered images

Feature maps



Hierarchical Visual Representation



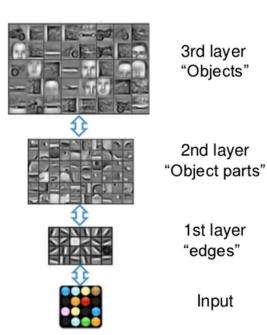
Hierarchical Processing

Deep Learning = Multiple Levels of Feature Representation

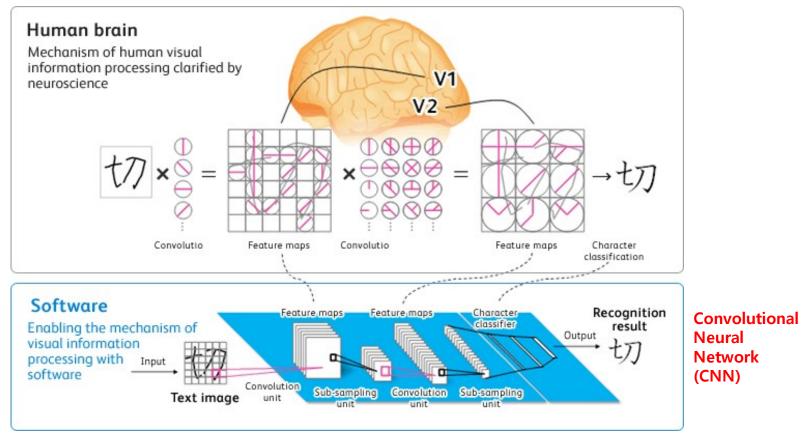
Learning Feature Hierarchy

Deep Learning

- Deep architectures can be representationally efficient.
- Natural progression from low level to high level structures.
- Can share the lower-level representations for multiple tasks.



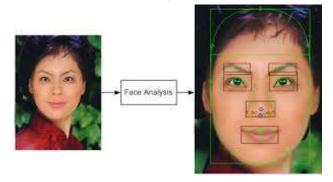
Brain vs. Deep Learning



Deep Learning = Multiple Levels of Feature Representation

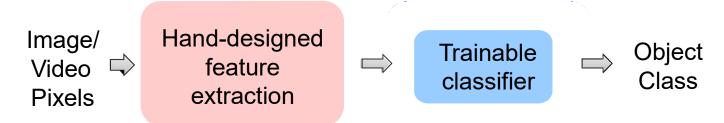
Traditional Machine Learning Solution: Feature Extraction & Classifier

- Supervised learning
 - Features are not learned, but extracted by humans

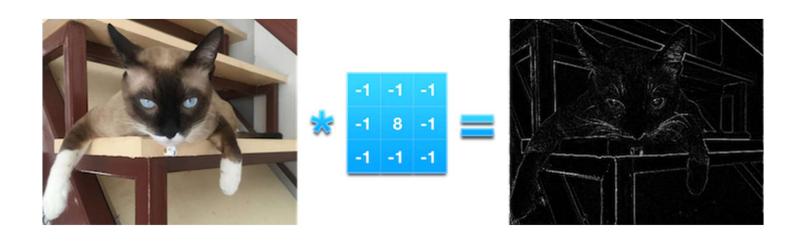


Facial Feature Extraction

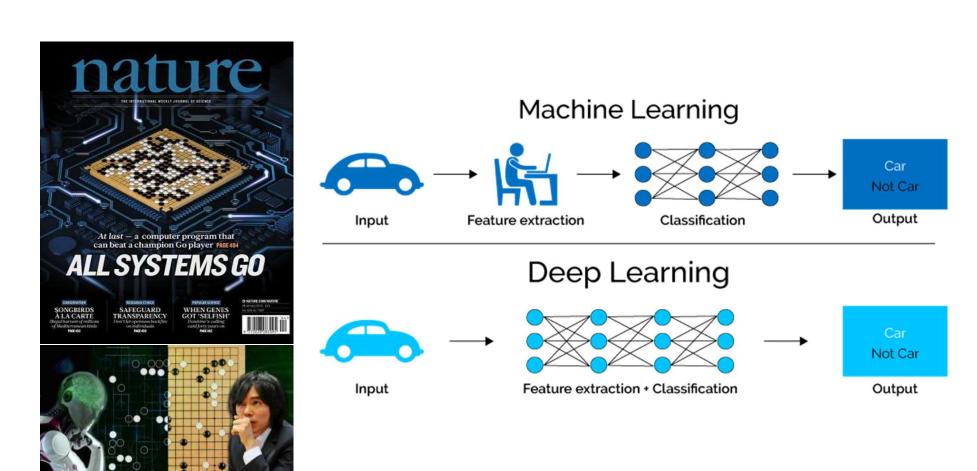
• Trainable classifier (i.e., shallow networks)



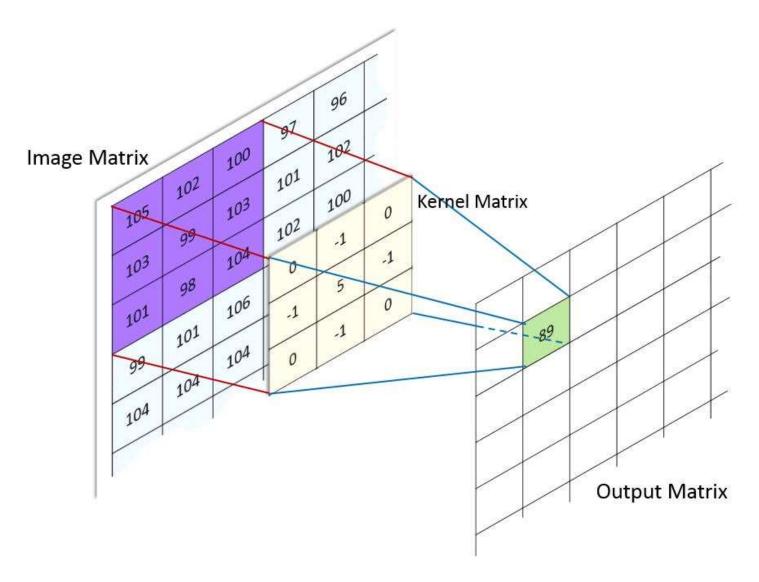
Feature Extraction via Convolution Filter



Paradigm Shift in Machine Learning



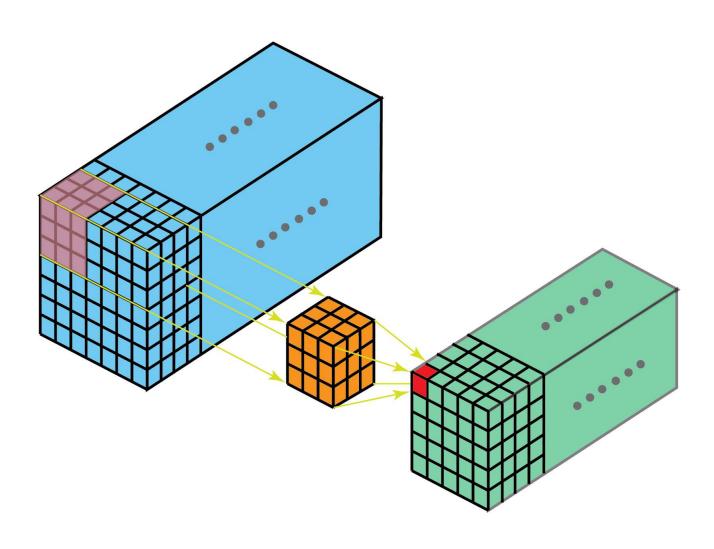
 Convolution is a simple mathematical operation which is fundamental to many common image processing operators. Convolution provides a way of 'multiplying together' two arrays of numbers, generally of different sizes, but of the same dimensionality, to produce a third array of numbers of the same dimensionality.



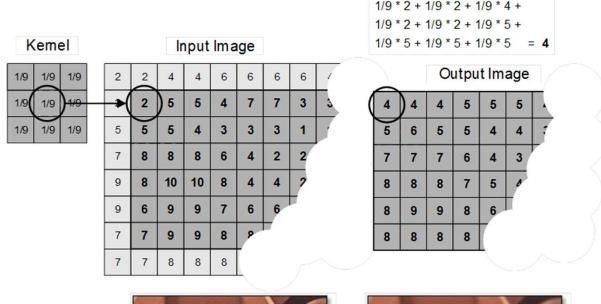
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

0.1	0.2	0.3
0.4	0.5	0.6
0.7	0.8	0.9

```
= 0.1 \times 10 + 0.2 \times 11 + 0.3 \times 12 
+ 0.4 \times 17 + 0.5 \times 18 + 0.6 \times 19 
+ 0.7 \times 24 + 0.8 \times 25 + 0.9 \times 26 
= 94.2
```



Convolution Edge Handling



Convolution Edge Handling

						_
0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	Ŋ
0	101	98	104	102	100	
0	99	101	106	104	99	1
0	104	104	104	100	98	A

17	N 4	Χ
Kernel	Matrix	ı

0	-1	0
-1	5	-1
0	-1	0

320				
210	89	111		
			8	

Image Matrix

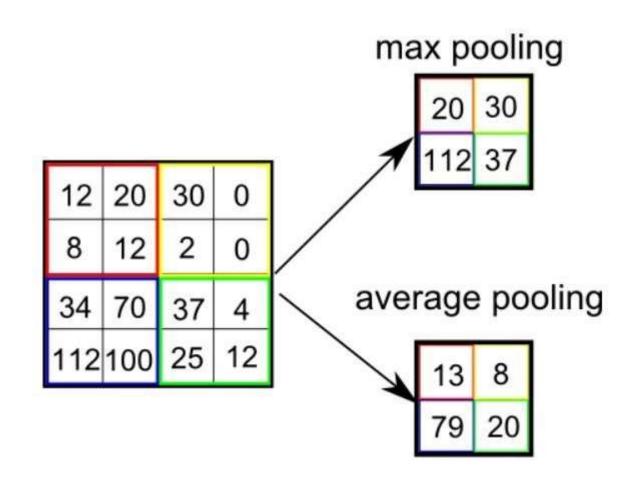
$$0*0+0*-1+0*0$$

$$+0*-1+105*5+102*-1$$

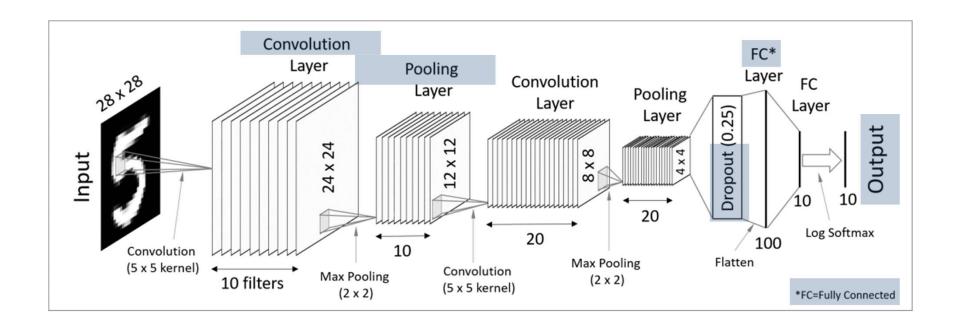
$$+0*0+103*-1+99*0=320$$

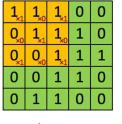
Output Matrix

Pooling Operation



Convolutional Neural Networks: Basics





Image

Convolved **Feature**

Note image size reduction!

Input image

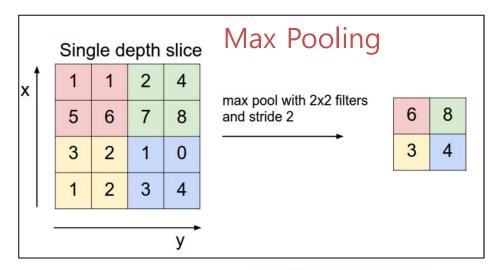
Convolution Kernel

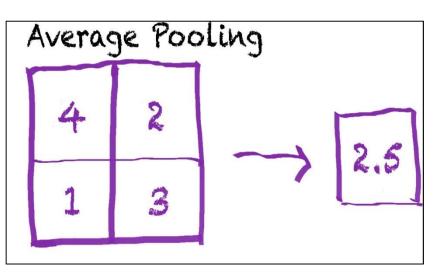
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

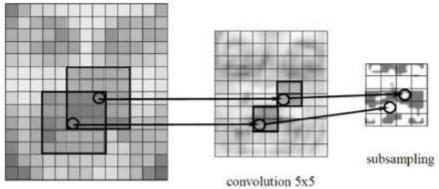
Feature map

Weights of Deep Network (to be learned or estimated)

Pooling: Subsampling

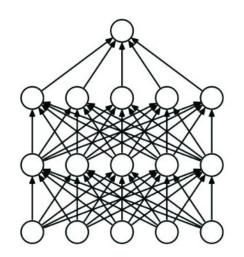




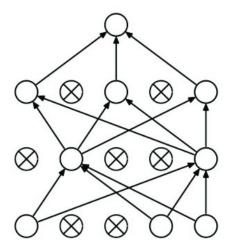


Dropout

Dropout: A Simple Way to Prevent Neural Networks from Overfitting [Srivastava et al. 2014]



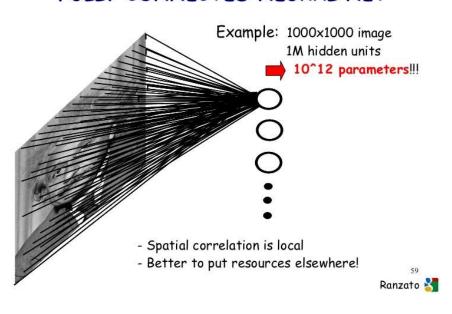
(a) Standard Neural Network



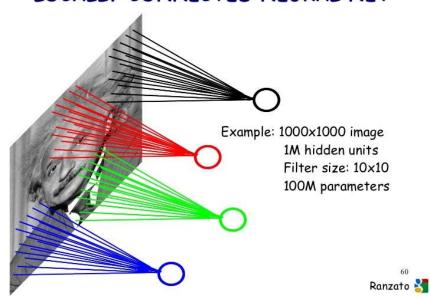
(b) Neural Net with Dropout

Full Connections (FC)

FULLY CONNECTED NEURAL NET

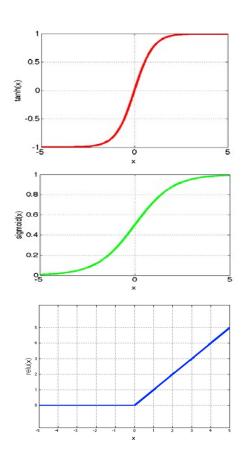


LOCALLY CONNECTED NEURAL NET

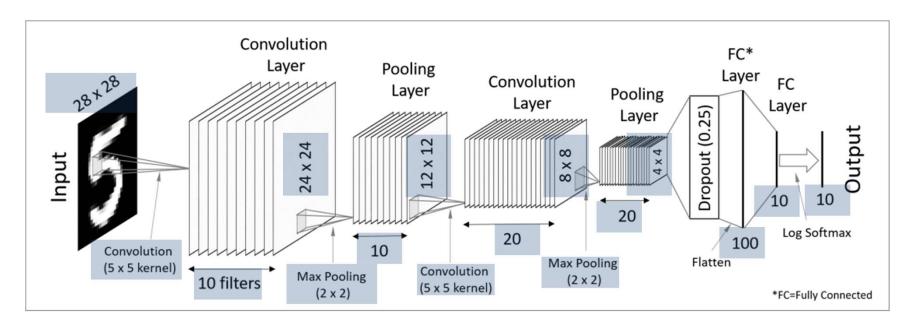


Non-Linearity (Activation Functions)

- Activation per neural element
- Options:
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear unit (ReLU)
 - Simplifies backpropagation
 - Makes learning faster
 - Avoids saturation issues
 - Preferred option



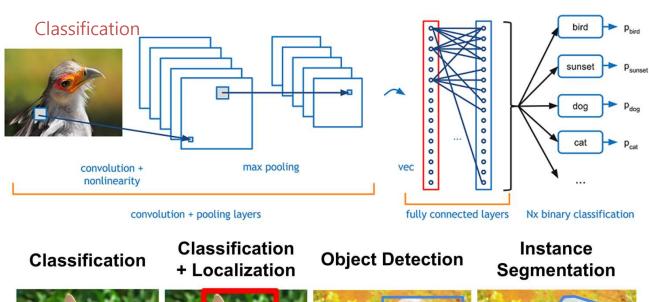
Convolutional Neural Networks: How to Read the Network

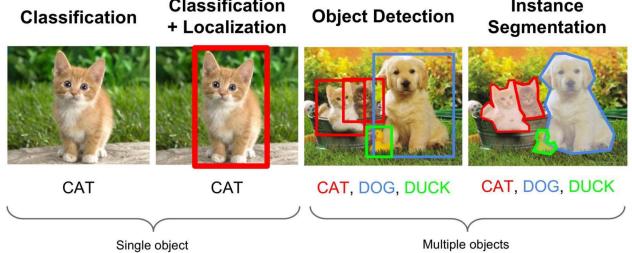


What CNN Does?

- Classification
- Detection
- Segmentation

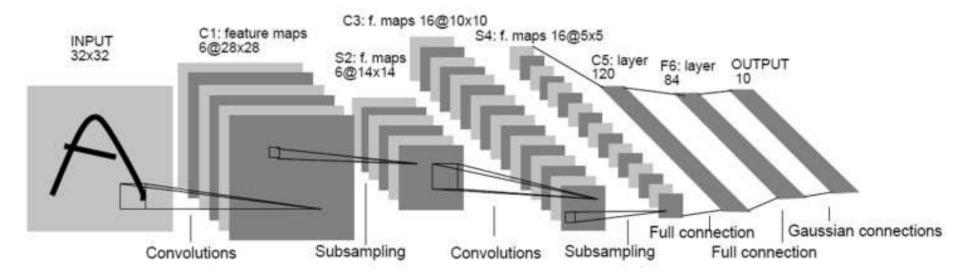
• ...





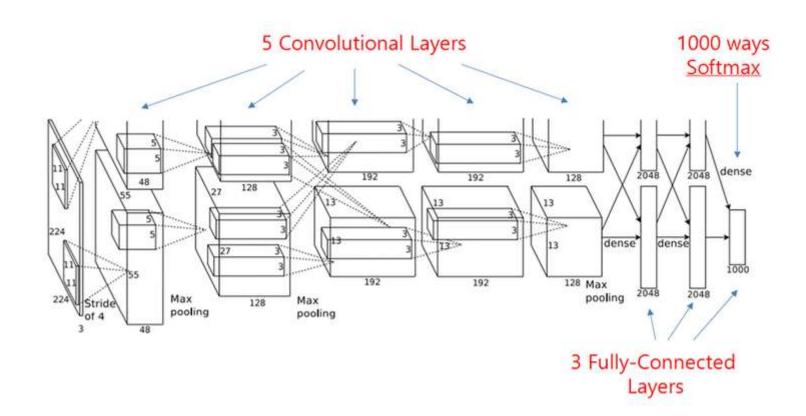
LeNet (1998)

- Developed by Yann LeCun
- First CNN Structure



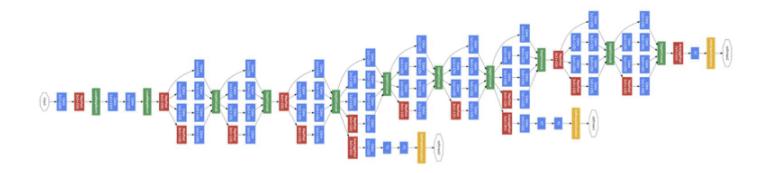
AlexNet (2012)

- Winner of ILSVRC 2012 Competition
- Recognition of ImageNet Database



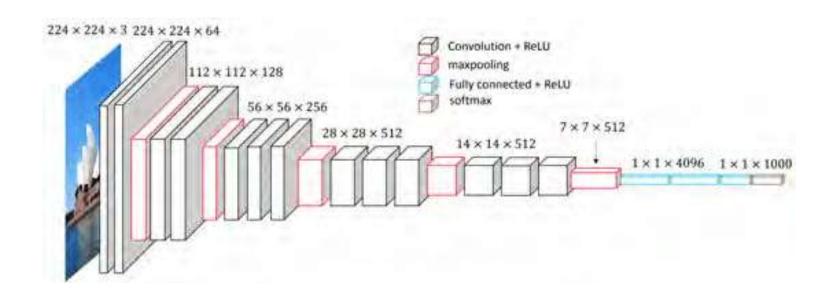
GoogLeNet (2014)

Winner of ImageNet 2014



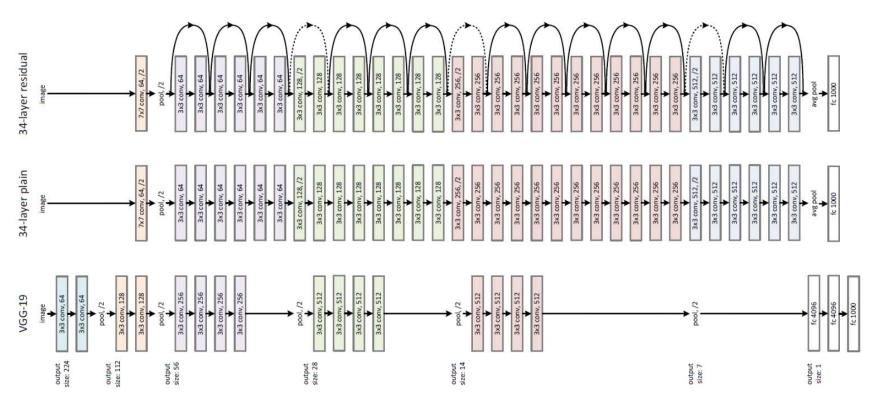
VGGNet (2014)

• 2nd Winner of ImageNet 2014



ResNet-50 (2015)

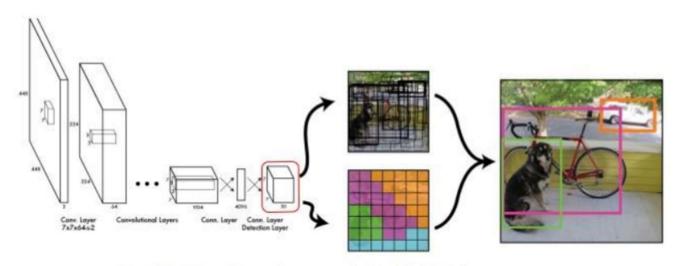
Winner ILSVRC 2015



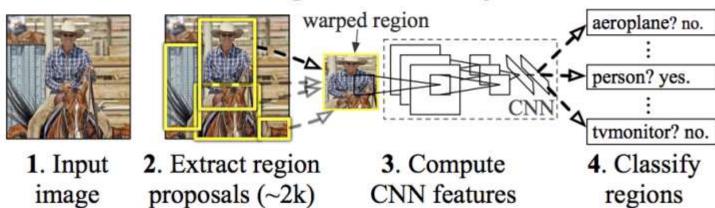
34-layer ResNet with Skip / Shortcut Connection (Top), 34-layer Plain Network (Middle), 19-layer VGG-19 (Bottom)

YOLO vs. Fast R-CNN

YOLO: You Only Look Once



R-CNN: Regions with CNN features



Segmentation

• U-Net

