Chapter 5 Deep Learning
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Problem: Vanishing Gradient
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Vanishing Gradient
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Why Vanishing Gradients

Gradients of the loss function approach to zero, making the network hard to train.

Sigmoid function squishes a large input space into a small input space between 0 and 1.

Therefore, a large change in the input of the sigmoid function will cause a small change in the

output.

Hence, the derivative becomes small.
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ReLU and Derivatives

RelLU function
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How Does RelLU Solve Vanishing
Gradient?

« RELU activation solves this by having
a gradient slope of 1, so during
backpropagation, there
Isn't gradients passed back
that are progressively getting smaller
and smaller, but instead they are staying
the same, which is how RELU
solves the vanishing gradient problem



SiLU (Sigmoid Linear Unit)
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SiLU Activation Function Comparison of SiLU and RelLU Activation Functions
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Overfitting




How Does Dropout Reduce
Overfitting?

* Dropout prevents overfitting due to a
layer's "over-reliance" on a few of its
Inputs. Because these inputs aren't
always present during training (l.e.
they are dropped at random), the layer
learns to use all of its inputs, improving
generalization



Dropout
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from Overfitting [Srivastava et al. 2014]

Dropout: A Simple Way to Prevent Neural Networks

(b) After applying dropout.

(a) Standard Neural Net



Dropout

Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.
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Computational Load

« Multidimensional Optimization
« GPU Computation (GIE, GPU Inference

Engine)
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Optimization

ADAM: a method for stochastic optimization
[Kingma et al. 2015]

i MNIST Multilayer Neural Network + dropou

SGDNesterov

* https://arxiv.org/pdf/1412.6980.pdf



Performance

Data vs. Neural Nets
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Deep Neural Networks

Medium Neural Networks
— Shallow Neural Networks

Traditional Machine Learning




