Training of Multi-Layer NN:
Back-Propagation



How to Train Multi-Layer NN

Define sum-squared error:

Use gradient descent error minimization: L) U)

AW. = —n ok

y pa
C WU‘

Works if the nonlinear transfer function is differentiable.



Multilayer Neural Network

f : activation function

y : output
x1, x2 : input




Forward-Propagation




Back-Propagation

Minimize error(d) by finding the weights (w)

& = error

z = desired output
y = actual output



Back-Propagation
S, = WyeS @

05 s “'srs"




U I
pda te the Welgl 1Its, w

- dfi(e - dfy(e
@ Weani= Wi + 76 c?;: b @ W2 = Wean T79% (JE.’E; b

dfi(e) _ A s dhe)
. " = Weegyy + 78 —2——x
e 2 (x2)2 (x2)2 2 de 2

5, “"'(xz)l = Wy + o,

df. (e
Was= Wy + 10 s(€) V4
de
Ca)

L dfs(e
Wse=Wss +770 fﬁ—(‘,)ys

d




Gradient Descent

N
The cost function J(-), the sum of squared errors (SSE), can be written as: T{w) ‘ Initial

1/ Gradient
weight \ .::',"/

o

J(w) = % ‘Z(targct(” — output®)?

. //

\: " . -

SSE = Z(targct(” = output“’)z Py, Global cost minimurr
: &~

.
>

MSE = L X SSE w
n
The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient

oJ

A
J

where n is the learning rate. The weights are then updated after each epoch via the following update rule:
Wi =W+ Aw,

where Aw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows:

aJ
B 55 il e
= -7 Z(targct(0 - output“))(—x}i))
i http://sebastianraschka.com/
faq/docs/closed-form-vs-

_ W _ D)
nZ,(tmgct output®)x; gd.html



Example

If activation function is a sigmoid function

sigmoid

fO) ==
Eor] = %Z?’:l(zi — f(x;w;))? —e ™ f
f'x) = X

(1 + e~%)?

N
i) e
== = > (5~ feDf Cwx fo
=1

= -2 (Zi - f(ej)) fCeiw) (1 = fwy))x; /\ .

Training rule :

W< w; + AWL'
Aw; = n(z; — yi)f (w) (1 — f(xwy))x; n = learning rate

as in the textbook.



