
Training of Multi-Layer NN:
Back-Propagation



How to Train Multi-Layer NN



Multilayer Neural Network

f : activation function
y : output
x1, x2 : input
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Forward-Propagation



Back-Propagation

δ = error
z = desired output
y = actual output 

Minimize error(δ) by finding the weights (w) 
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Update the weights, w
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Gradient Descent

http://sebastianraschka.com/
faq/docs/closed-form-vs-
gd.html

The cost function J(⋅), the sum of squared errors (SSE), can be written as:

The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient

where η is the learning rate. The weights are then updated after each epoch via the following update rule:

where Δw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows:
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If activation function is a sigmoid function
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Training rule :
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as in the textbook.


