Training of Multi-Layer NN:
Back-Propagation



How to Train Multi-Layer NN

Define sum-squared error:

Use gradient descent error minimization: L) U)
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Works if the nonlinear transfer function is differentiable.



Multilayer Neural Network

f : activation function

y : output
x1, x2 : input




Forward-Propagation




Back-Propagation

Minimize error(d) by finding the weights (w)

& = error

z = desired output
y = actual output



Back-Propagation
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Gradient Descent

N
The cost function J(-), the sum of squared errors (SSE), can be written as: T{w) ‘ Initial
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The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient
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where n is the learning rate. The weights are then updated after each epoch via the following update rule:
Wi =W+ Aw,

where Aw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows:
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Example

If activation function is a sigmoid function

sigmoid
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Training rule :

W< w; + AWL'
Aw; = n(z; — yi)f (w) (1 — f(xwy))x; n = learning rate

as in the textbook.



