
Training of Multi-Layer NN:
Back-Propagation

How to Train Multi-Layer NN

Multilayer Neural Network

f : activation function
y : output
x1, x2 : input

① ②

③ ④

⑤ ⑥

f

Forward-Propagation

Back-Propagation

δ = error
z = desired output
y = actual output

Minimize error(δ) by finding the weights (w)

① ②

③ ④

⑤

Back-Propagation

Update the weights, w
① ②

③ ④

⑤ ⑥

Gradient Descent

http://sebastianraschka.com/
faq/docs/closed-form-vs-
gd.html

The cost function J(⋅), the sum of squared errors (SSE), can be written as:

The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient

where η is the learning rate. The weights are then updated after each epoch via the following update rule:

where Δw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows:

Example

ଵ

ଶ ௜ ௜ ௜
ଶே

௜ୀଵ

௜ ௝ ௜ ௜ ௜

ே

௜ୀଵ

= − ∑ 𝑧௜ − 𝑓 𝑒௝ 𝑓(𝑥௜𝑤௜)(1 − 𝑓 𝑥௜𝑤௜)𝑥௜
ே
௜ୀଵ

If activation function is a sigmoid function

𝑓 𝑥 =
1

1 + 𝑒ି௫

𝑓ᇱ 𝑥 =
−𝑒ି௫

(1 + 𝑒ି௫)ଶ

(x)

’(x)

Training rule :

௜← ௜ + ௜

௜ η ௜ ௜ ௜ ௜ ௜ ௜ ௜ η = learning rate

as in the textbook.

