MDL Ch. 1 Handout

Inverse Crime

p

Training
Data

N\

—1

-

Testing
Data

N

—»[To Build System . }

Inverse Crime

—|

To check the
correctness of System

|

Overfitting (1D)

‘Values

e

-
e

Underfitted

—p
Time

AValues = AValues i

Good Fit/Robust Overfitted

Overfitting (2D)

Feature Space

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting -- too
explain the good to be true)

variance)

Prediction error

Test data
/

Training data

Model complexity

Classification vs. Regression

What.is the Diﬂerence Between |

04r

nzr

-02f

04

-06F

50 60 70 80 a0 100

Regression

30

Classification

What is Classification?

Binary classification: Multi-class classification:
3 A
X VA%
[o X . X, = X X
O O B
O 0
> >

Classification (Ex.)

daynight = Elasaify[{
B - Night”, E"* "Day", [~ "Nient", JEl - "Night",
H'* "Day", [~ "Night", il - "Day", Eq "Day",
WL - Nighe, -4 "Night", [lijges -+ "Day", [~ "Night",
Bl - night”, S - "Day", -—+ ‘Night", ["Night",

“-}"Day E-ﬁ ‘Day", Eﬂi ‘Day", “4 ‘Day",

.-—r"hllght W-«} '‘Day", - i|4 '‘Day", r—"-% 'Day",
--}"nght ,ﬂ-i 'Day" }]

Classification (Ex.)

o« E ¢

ship ship dog frog truck

NN Lk

car bird cat frog horse

t"ﬂi. -r'- b

truck plane car plane

4 B ¥ e

bird deer cat deer horse

What is Regression?

Method of Least Squares
30- Y e =) (- 12

FRegression line

random error for X;

ei=Yi—)7i

Y

observed valuefor ¥, F-----------

predicted value for ¥, [-==-------

Regression

Polynomial Ridge Regression
MSE: 9.58

25

20 A

15 A

10 A

Temperature in Celcius

_10 -

_15 Training data
e Testdata

0 50 100 150 200 250 300 350
Day

10N

lonal Regress

I-dimens

Mult

AR

MDL Ch. 2 Handout

Biological Neuron vs. Artificial Neuron

Impulses carried toward cell body

\ dendrite
presynaptic
) terminal

, The Keys = Weights !!
Impulses carried away
from cell body

L wWo
*@® synapse
axon from a neuron

woTo

(5

w1
¥ m - _
1 output axon
aaaaaaaaa ﬂx) = 1 _ﬁx activation
+e :
input signal w2$2 rL.IrICiIOﬂ

Sigmoid Activation Function 14

Artificial Neural Network (ANN)

Inputs —

The Keys = Weights !!!

o W 1

Activation function

(more on this later)

I I .

1
Input signal KX) —
140

saturated

Sigmoid Activation Function

Step function
Yy
+1
-
0 X
A4

yStep_ J L if X=0
|0if X <0

Sign function
Yy
+1
>
0 X

pign_ [F+Lif X 20

.-—""

Lif X <=0

],.s'ignw id_ I

l+e

—X

[RTE X ¥
December 1@, 2013

46

Multi-Layer Neural Networks

Input Hidden Layer Output
Layer Layer

Input #1 —=
Input #2 —=

Input #3 —»

* Nonlinear classifier

* Training: find network weights w to minimize the error between tru
e training labels y; and estimated labels f,,(x;):

HM=;®—Amﬁ

* Minimization can be done by gradient descent provided fis differentiable
* This training method is called back-propagation

Shallow Network vs. Deep Network

‘—; 20 Years J

"Non-deep" feedforward Deep neural network
neural network

hidded laver . hidden layer 1 hidden layer 2 hidden layer 3
A input layer
Y

output laver

R s e

S

s
of Hidden Layer <=1 (i.e., shallow network) # of Hidden Layer >= 2 (i.e., deep network)

(or Multi Layer NN)

Difficulties of Training Deep Neural Network

Problem with nonlinear activation function

Gradient (error signal) decreases exponentially -
with the number of layers and the front layers|

train very slowly.

& * $—=3 =3 =23 - S —¢ Sl
Deep Neural Network

Vanishing Gradient

* Given limited amounts of labeled data, training via

backpropagation does not work well

X
Underfitting Just right!

overfitting

« Difficulty in optimization

local minima

global minimum

state

New Solutions for Deep Neural Network

» Solved by a new non-linear activation function:

Sigmoid
1 I i [} |] I i] I])
1.0 - h : i A . 1.0 -
saturated- ¢ linear
0.5 PR et . DA -
6 b= TS 1.6
O Bl e o B |
02k s f— 02—
0.0 - | o0
i I | 1 I 1 I 1 I i 1 1
4 3 -3 -1 i 1 2 4 -4 - -2

« Solved by new regularization methods:
(Hinton et al., 2012) etc.

» Solved by

* Local minima are good and close to global minima

in 2010 & 2011

a) Standard Neural Net

(b) After applying dropout.

 local minima are all similar

Delta Rule : Perceptron Rule

Perceptron Training Rule

e Weights modified for each example

e Update Rule:
W, <— W, + Aw,
where

Aw, =n(t —o)x,
/]

learning target perceptron

rate value output

In textbook

W; « W; +aex,

(Equation 2.2)

input
value

Gradient Descent in Delta Rule

How to Learn Perceptron?

Delta Learning Rule

I _
Ep=5 (1, a5,)

v new weight

V' current weight t = target
7 learning rate a = net output = f(v)
FE Error Function

https://medium.com/@neuralnets/delta-learning-rule-gradient-descent-neural-networks-f880c168a804

Gradient Descent (1)

A

J(w) Initial

{ _— Gradient

U
/
!

Global cost minimum

A Jmin(w)

Gradient Descent (2)
f(x)

Stepping (Learning Rate) in Gradient

Descent
f(x)

Starting point

Target
(Minimum)

xo X

https://www.neural-networks.io/en/single-layer/gradient-descent.php

Effect of Learning Rate or Step Size

Big learning rate Small learning rate

Effect of Local Minima

Multidimensional Optimization

o - = .
o = ~ N\
" b N
N
N N
\ N N
) N
— N N \
3
: N
‘7
>0 -
|
4 py
\ N\ ~ / / J
— *\\ \ — ,,"‘
N /
N N . y >
\ , /
Y N \‘\ ’ 4
£ >
o - -
b
~ b~ RN " B
(v? — = »

Why activation function then?

Generalized Delta Rule

e,= The error of the output node i

v,= The weighted sum of the output node i

It neural networks had no activation functions, they
would fail to learn the complex non-linear patterns
that exist in real-world data. Activation

functions enable neural networks to learn these non-
linear relationships by introducing non-linear
behaviors through activation functions.

Checkout

https://www.datacamp.com/ tutorial/introduction-to-
activation-functions-in-neural-networks

(Equation 2.3)

(Equation 2.4)

e from the cost function.

If activation fun. is x, then its derivative

is 1 (check Equation 2.2)

@' = The derivative of the activation function ¢ of the

output node i

Single vs. Multi Layer Network:
XOR Problem

Multi Layer Network:
XOR Problem

Single Layer NN and Decision Boundary

1 layer of | 'M:j:
trainable } %
weights 4~

L JInput layer

separating hyperplane

2 Layer NN and Decision Boundary

output layer,
N/

/—/ N~
\
\

2 layers of /\ avarea
trainable ‘U~ _/ U/ \ Y,

weights il
Input layer (oNe C)
P yerilo) O U

convex polygon region

3 Layer NN and

output Iayer/ ""‘"\;,

3 layers of
trainable

=

N
\./\’ AN
weights

/
\

Input layer | L y. _,/‘

Decision Boundary

AT D)
| ' Z 7\
7 = ___: 7 }
j 7
e 7/4 V777
— 7 o)/ 72
704

composition of polygons:
convex regions

Solving XOR with 2 Layer NN

0(0]0 Two solutions:
(1) (1) 1 Xy Xy ¥ %y X
11110 (X{VX5)AX{AX,

-~ decision boundaries

6] \
N\ “AND-NOT”
\ .

