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Overfitting (1D)
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Overfitting (2D)

Feature Space

Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting -- too
explain the good to be true)

variance)



Prediction error

Test data
/

Training data

Model complexity




Classification vs. Regression
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What is Classification?

Binary classification: Multi-class classification:
3 A
X VA%
[ o X . X, = X X
O O B
O 0
> >




Classification (Ex.)

daynight = Elasaify[{
B - Night”, E"* "Day", [~ "Nient", JEl - "Night",
H'* "Day", [~ "Night", il - "Day", Eq "Day",
WL - Nighe, -4 "Night", [lijges -+ "Day", [~ "Night",
Bl - night”, S - "Day", -—+ ‘Night", [ "Night",

“-}"Day E-ﬁ ‘Day", Eﬂi ‘Day", “4 ‘Day",

.-—r"hllght W-«} '‘Day", - i|4 '‘Day", r—"-% 'Day",
--}"nght ,ﬂ-i 'Day" }]



Classification (Ex.)
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What is Regression?

Method of Least Squares
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Regression

Polynomial Ridge Regression
MSE: 9.58
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MDL Ch. 2 Handout



Biological Neuron vs. Artificial Neuron
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Artificial Neural Network (ANN)
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The Keys = Weights !!!
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Multi-Layer Neural Networks

Input Hidden Layer Output
Layer Layer

Input #1 —=
Input #2 —=

Input #3 —»

* Nonlinear classifier

* Training: find network weights w to minimize the error between tru
e training labels y; and estimated labels f,,(x;):

HM=;®—Amﬁ

* Minimization can be done by gradient descent provided fis differentiable
* This training method is called back-propagation



Shallow Network vs. Deep Network
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(or Multi Layer NN)

Difficulties of Training Deep Neural Network

Problem with nonlinear activation function

Gradient (error signal) decreases exponentially -
with the number of layers and the front layers|

train very slowly.

& * $—=3 =3 =23 - S —¢ Sl
Deep Neural Network

Vanishing Gradient

* Given limited amounts of labeled data, training via

backpropagation does not work well
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New Solutions for Deep Neural Network

» Solved by a new non-linear activation function:

Sigmoid
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« Solved by new regularization methods:
(Hinton et al., 2012) etc.

» Solved by

* Local minima are good and close to global minima

in 2010 & 2011

a) Standard Neural Net

(b) After applying dropout.

 local minima are all similar



Delta Rule : Perceptron Rule

Perceptron Training Rule

e Weights modified for each example

e Update Rule:
W, <— W, + Aw,
where

Aw, =n(t —o)x,
/]

learning target perceptron

rate value output

In textbook

W; « W; +aex,

(Equation 2.2)

input
value




Gradient Descent in Delta Rule

How to Learn Perceptron?

Delta Learning Rule

I _
Ep=5 (1, a5, )

v new weight

V' current weight t = target
7 learning rate a = net output = f(v)
FE Error Function

https://medium.com/@neuralnets/delta-learning-rule-gradient-descent-neural-networks-f880c168a804




Gradient Descent (1)
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Gradient Descent (2)
f(x)




Stepping (Learning Rate) in Gradient

Descent
f(x)

Starting point

Target
(Minimum)

xo X

https://www.neural-networks.io/en/single-layer/gradient-descent.php



Effect of Learning Rate or Step Size

Big learning rate Small learning rate




Effect of Local Minima




Multidimensional Optimization
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Why activation function then?

Generalized Delta Rule

e,= The error of the output node i

v,= The weighted sum of the output node i

It neural networks had no activation functions, they
would fail to learn the complex non-linear patterns
that exist in real-world data. Activation

functions enable neural networks to learn these non-
linear relationships by introducing non-linear
behaviors through activation functions.

Checkout

https://www.datacamp.com/ tutorial/introduction-to-
activation-functions-in-neural-networks

(Equation 2.3)

(Equation 2.4)

e from the cost function.

If activation fun. is x, then its derivative

is 1 (check Equation 2.2)

@' = The derivative of the activation function ¢ of the

output node i



Single vs. Multi Layer Network:
XOR Problem



Multi Layer Network:
XOR Problem



Single Layer NN and Decision Boundary
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2 Layer NN and Decision Boundary
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3 Layer NN and
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Solving XOR with 2 Layer NN

0(0]0 Two solutions:
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