Multi-category Generalization: Multi-class Perceptron (DHS 5.12)

Decision Rule:

 $\begin{array}{l} g_{i}(\underline{x}) = \underline{w}^{(i)T} \underline{x} \\ \text{if } g_{i}(\underline{x}) > g_{j}(\underline{x}) \text{ for all } j \neq i, \text{ assign } \underline{x} \text{ to } S_{i} \end{array}$

<u>Algorithm (given in class)</u>: For each prototype $\underline{y}^{(i)}$

If $\underline{y}^{(i)} \in S_i$ but machine assigns it to S_j Update for S_i , $w^{(i)}(k+1) = \underline{w}^{(i)}(k) + \alpha y^{(i)}$

Update for S_i, $w^{(j)}(k+1) = \underline{w}^{(j)}(k) - \alpha y^{(i)}$

$$w^{(l)}(k+1) = \underline{w}^{(l)}(k)$$
 all $l \neq i, j$

(DHS p. 267, Eq. (115))

If machine classifies $\underline{y}^{(i)}$ correctly, do not update the prototype.

The algorithm is guaranteed to converge (for a fixed increment).

So far,

Error correcting method - Perceptron

- Update only for misclassified samples or prototypes
- Search for error-free solutions
- Samples must be linearly separable.